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Operational Energy Systems 
• Electric Power Assurance 

• Microgrid, renewables, nuclear, storage, 

control systems, cyber 

• Transportation Energy Assurance 
• Combustion research, renewable fuels 

Climate Change Science 
• Operational Impacts 

•  Assessments  

  

        Energy Security Roles 
 

$250M DOE Energy Research Program  

Support DoD on energy system, physical, and 

cyber security 

System integrator for the DOE/NNSA 

Distributed Energy Technology Laboratory 

Combustion Research Facility 

DoD Installation Security Projects 

Nuclear Design & Fuel Cycle 
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Energy Challenge - Harvest, Transform, and Control 

Delivery of Available Energy  

*EXERGY = AVAILABLE ENERGY = useful portion of energy that 

allows one to do work and perform energy services 

Electricity 

Fuel 

Heat 

Cooling 

Chemicals (such as 

lubricants) 

Clean Water 

 Fossil (coal, oil, gas) 

             Solar (including wind and hydro) 

                     Geothermal 

                        Nuclear 

                          Plant, animal, and      

                 human waste 

               CO2 & other energy            

       conversion  

                      byproducts  

Energy & Material Resources 

Harvest, transform, 

and deliver exergy* at 

the necessary 

amount and rate. 

Energy Needs 

or Services 
Energy 

Processing 
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Oil and Gas 

Crude 

Oil 

Coal 

Gas 

Refinery 

•Extensive storage in fuels 

•Fixed infrastructure is inflexible  

•Significant human interaction 

Controlled Supply Fixed Infrastructure Random Load 

Today’s Power Grid is Designed for Dispatchable 

Centralized Generation 
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Loads are Predictable, Allowing 

Essentially Open-loop Grid Control 
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An Emerging Market:  
Preparing for Large-Scale Renewable Energy Integration 

 New Market Scenario:  Climate change concerns, renewable portfolio 

standards, incentives, and accelerated cost reduction driving steep 

growth in U.S. renewable energy system installations. 
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Stochastic Sources (Negative Loads) Complicate Load 

Forecasting 

Wind power forecasting examples 
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This is weather forecasting! 

Forecast 

Average 

            6:00        9:00       12:00      15:00      18:00     21:00 

Time (hrs) 

        0      2      4      6      8    10    12    14    16    18    20   22    24 

Hours 

400 

300 

200 

100 

    0 

M
W

 

W
/m

2
 

Solar Insolation, May 4, 2004 CST 

Actual Wind Power 

Forecasts 



PV Output Can Vary Considerably on an Average Day 

• Irradiance and PV system ac output for a typical partly cloudy day in July 

• PV system rating: 1,200 kW ac, presently limited to 400 kW ac 

 (intentionally) 
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Today, Stochastic Renewable Sources are Treated as 

Negative Loads 
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State 
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Power 
Prediction 

PV 
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To Achieve Maximum Benefit Renewable Energy Needs 

to be Treated as a Source 

Fixed 
Infrastructure 

Load 

System efficiency can increase with reduction in excess generation capacity. 

Both our generation and our loads are now random! 



Storage: Impedance and Capacity Matching Solution 

• Specific applications justify electrical energy storage solutions 

Autonomous Mars Rover 

Solar 

Solar 

Autonomous Man on Earth 

Super Capacitor 

(Storage) 

Robot  

Mobility 

Available 

Power In 
12 Volts 
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Required 

Power Out 

Earth 

PV  

Solar Cells 

Available 

Power In 

Fossil Fuel 

(Storage) 

End  

Uses 

Required  
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Lifestyle 

Lifestyle 

*NOTE: Required Power Out > Available Power In; Impedance/Capacity Mismatch  



Impedance/Capacity Mismatch (Duty Cycle)  
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Microgrids Can Provide a Pathway for More Effective 

Use of Renewable Energy: Optimized Storage and Info 

Flow 

Generator 

Transmission 

Substation 

Distribution 

Loads 

With distributed generation 

and storage, electric 

power can be provided 

when the grid is down X 

Storage and generation on load side, 

sized to match energy performance 

needs 
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UPFC - Unified power flow controllers 

Low-Level Distributed Nonlinear Control Enables 

Stability and Transient Performance 
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SNL’s Hamiltonian-Based Nonlinear Control Theory 

Addresses Stability and Performance 

Equations from a microgrid can be used to construct a Hamiltonian. 

Asymptotic stability 

is achieved by satisfying the following constraints 

Fisher Information Equivalency provides link to and minimization  

 of information flow and energy storage. 

 Hdtc

Individual microgrid 

Hamiltonian 

Addition of cost functions allow for optimization to a particular solution. 

Chosen to minimize storage, conventional generation, etc. 
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Assumptions Limit Most Common Models 

Reduced Network Model (RNM) 
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• Each Synchronous Machine represented as voltage phase with constant magnitude E’ behind 
transient reactance 

• Various network components assumed to be insensitive to changes in frequency 

• Mechanical angle of Synch-Mach. rotor assumed to coincide w/ electrical phase angle of voltage 
phase behind transient reactance 

• Loads represented as constant impedances thereby eliminating DAEs 

• Mechanical power input to generators assumed constant (Pmk) 

• Saliency is neglected 

• Stator resistance is neglected 

Modify to include 

variable definition 

 

Instantaneous power balance 

*M Ghandhari, “Control Lyapunov Functions:  A Control Strategy for Damping of Power Oscillations in Large Power Systems,” KTH, 

2000 



Simplest Network Model: 

One-Machine Infinite Bus (OMIB)   
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Design of the OMIB with UPFC Using Hamiltonian 

Surface Shaping and Power Flow Control (HSSPFC) 
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Variable Generation and UPFC Connected 

to Infinite Bus 
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Select wind generation and UPFC nonlinear PID controllers from HSSPFC: 

Model: 

Hamiltonian and Power Flow: 

Static stability condition and dynamic stability condition: similar to 

previous example 
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Microgrid with UPFCs and Wind Turbine Connected to 

Grid (Infinite Bus) 

Wind  

Turbine 
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Wind Turbine: 
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UPFC - Unified power flow controllers 

High-Level Control Enables 

Prioritization and System Adaptability 
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Gen 

Gen 

High-level control 

optimizes system priorities 

Nonlinear control 

maintains stability 

and performance 



A Highly Interconnected Microgrid 

Will Result from these Advancements 
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How do you connect 

System components 

in an efficient, cost 

effective manner? 

Generation 
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These Microgrids will be Building 

Blocks for Large Networks 
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DOE Has Identified Challenges That Must Be 

Addressed to Increase PV Penetration  

http://www1.eere.energy.gov/solar/solar_america/rsi.html  

• 14 RSI Reports 

• Advanced Grid Planning and Operations 

• Utility Models, Analysis and Simulation Tools 

• Advanced PV System Designs and Technology Requirements 

• Development of Analysis Methodology for Evaluating the Impact of High Penetration PV 

• Distribution System Performance Analysis for High Penetration PV 

• Enhanced Reliability of PV Systems with Energy Storage and Controls 

• Transmission System Performance Analysis for High Penetration PV 

• Renewable System Interconnection Security Analysis 

• Solar Resource Assessment: Characterization and Forecasting to Support High PV Penetration 

• Test and Demonstration Program Definition to Support High PV Penetration 

• Value Analysis 

• PV Business Models 

• Production Cost Modeling for High Levels of PV Penetration 

• PV Market Penetration Scenarios 

http://www1.eere.energy.gov/solar/solar_america/rsi.html
http://www1.eere.energy.gov/solar/solar_america/rsi.html


DOE is Addressing Wind Systems Integration 

Challenges 

Challenges: 

• Transmission Interconnection & Congestion 

• Lack of knowledge of operational impacts and integration costs of wind energy 

• Shortage of power system professionals with knowledge of wind energy 

• Policy treatment of wind energy as an electricity resource 

DOE Action: 

• Assess wind’s potential to serve our Nation’s electricity needs 

• Develop tools to assist the electric utility industry analyze wind energy 

• Perform operational and interconnection studies with industry stakeholders nationwide 

• Provide education curriculum for the next generation of wind energy professionals 

• Reach out to federal, state, and local stakeholders on the challenges and solutions to wind 
energy integration 

Results: 

• Set the path for wind industry to accelerate its penetration 

• Increase body of knowledge on wind/grid interconnection 

• Help grow the delivery of emission-free energy from roughly 1 percent to the AEI’s vision of 
20 percent of our Nation’s electricity usage  
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Wind Radar Program 

• Project Goals: 

– Streamline existing federal requirements 

– Establish coordinating mechanism 

– Identify technical solutions (wind turbine & radar 
side) 

• Long-Term Goal:  

– Clear, timely, predictable Federal agency decision-
making on wind siting processes 

• Past Accomplishments 

– Supported interagency working group  

– Conducted radar baseline tests 

– Created wind radar interaction fact sheet 

– Performed case studies 

– Performed industry outreach 

– Supported IEA EU and NATO wind radar 
processes 

– Participated in joint DOE-INL-FAA-DOD 
assessments 

• Partners: SNL, INL, DOD, DOE, DOT, DHS, FAA, 
USDA, Interior, Commerce, others TBD 



Next Steps, Summary, and Conclusions 

• Next Steps 

– Continue to refine models/controls  

– Further numerical simulations 

– Baseline microgrid system analysis 

• Summary 

– Renewables bring technical and operational challenges 

– We cannot continue to treat stochastic renewables as negative loads  

– Energy storage is not a silver bullet 

• Conclusions 

– Microgrids can effectively align renewable energy resources with mission needs 

– Applied HSSPFC two-step process to analyze feedback controllers 

– Optimize UPFC with variable generation requirements 

 



Backup Charts 



Control Theory Needs to be Expanded from Simple 

to Complex Examples 

Example system with control input v(t). 
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Control gains 

PID controller: 

Hamiltonian: 

Derivative of the Hamiltonian: 

Controller gains are chosen for specific 

performance within the solution space defined by: 
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R.D. Robinett and D.G. Wilson, “Nonlinear Power Flow Control Applied to Power Engineering”, Int’l Symposium on Power Electronics, 

Electrical Drives, Automation, and Motion, SPEEDAM 2008, June 11-13, Ischia, Italy, pp. 1420-7. 



• Devices have two modes of operation 

– Operating in shunt with power line:  injected currents are 

controlled 

 Static Var Compensator (SVC) 

– Operating in series with the power line:  inserted voltages are 

controlled 

 Unified Power Flow Controller (UPFC) 

 Controllable Series Capacitor (CSC) 

 Quadrature Boosting Transformer (QBT) 

– AKA Controllable Series Devices 

Flexible AC Transmission System (FACTS) 

Power Electronic Controllers 

• Offer greater control of 

power flow 

• Secure loading 

• Damping of power system 

oscillations 

Injection Models of CSDs 

•Valid for load flow and angle stability analysis 

•Helpful to understand impact on power systems   

•Model useful for purpose of developing control laws 


