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Center for Sustainable Coastal Tourism 
The Center for Sustainable Coastal Tourism was established in 2009 as a university collaboration 
between the School of Ocean and Earth Science and Technology, the College of Social Sciences, 
School of Travel Industry Management, Hawai‘inuiākea School of Hawaiian Knowledge, and the 
School of Architecture.  In partnership with local businesses, government, and the community, 
the center conducts research, education, and outreach on Hawai‘i tourism and the various 
economic, cultural, and environmental impacts of the visitor industry.  Signature projects of the 
Center of Sustainable Coastal Tourism serve to improve the quality of Hawai‘i’s environment, 
restore habitats and ecosystems, and reduce the energy and water needed to support the tourism 
industry resulting in positive impacts on both Hawai‘i’s economy and quality of life for local 
residents. 

The University of Hawai‘i Sea Grant College Program has served Hawai‘i and the Pacific for 
over 40 years and is dedicated to achieving resilient coastal communities characterized by vibrant 
economies, social and cultural sustainability, and environmental soundness. 

For further information, please contact us 
University of Hawai‘i Sea Grant College Program  
School of Ocean and Earth Science and Technology 
2525 Correa Road, HIG 238 
Honolulu, HI 96822 
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Government, the State of Hawai‘i, or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government, the 
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Introduction 
This report provides a summary of an investigation by the University of Hawai‘i Sea Grant 
College Program into the viability and effectiveness of installing a seawater air conditioning 
district cooling system in Waikīkī.  Seawater air conditioning (SWAC) harnesses the cooling 
properties of cold seawater to provide cool air for air conditioning purposes.  In doing so, SWAC 
reduces the amount of electricity needed for air conditioning.  SWAC is particularly relevant to 
Hawai‘i for two reasons: first, the proximity of deep, cold, ocean water to areas of high 
population make Hawai‘i an obvious location for implementing the technology; and secondly, 
with approximately 90% of its electricity generated from fossil fuels, Hawai‘i is the most fossil 
fuel dependent state in the nation.  Unlike the rest of the U.S. where coal, natural gas, and nuclear 
power are called upon to meet a substantial proportion of the electricity demand, Hawai‘i relies 
heavily on residual fuel oil (the by-product of refining crude oil for jet fuel, gasoline, and other 
distillates).  As a result, Hawai‘i has very high electricity prices compared to the rest of the 
country.  SWAC has the potential to both cut the cost of air conditioning and reduce the amount 
of harmful emissions that are released as a by-product of generating electricity from fossil fuels. 

Seawater air conditioning works by pumping cold (44-45°F), deep (1,600-1,800 feet) seawater 
into a cooling station (Figure 1).  Here, the cold seawater is used to chill fresh water flowing in 
nearby pipes.  The chilled fresh water is then piped into hotels for cooling purposes while the 
seawater (slightly warmed to 53-58°F) is pumped back into the ocean at a shallower depth (120-
150 feet). 

    
   Figure 1: Seawater Air Conditioning 
 
Discussion of Accomplishments 
This section first outlines the project goals and objective before discussing the significant results, 
major findings, and conclusions of the project.  The overarching goal of the project was to 
provide an extended, independent analysis of implementing a district-wide SWAC system for 



SWAC Public Report – Submitted 9/19/2012  4   

Waikīkī compared to business as usual and a selection of alternative renewable energy and energy 
efficiency options.  The project was structured around four tasks: 

1. A comprehensive written report evaluating the environmental costs and benefits of a 
district-wide SWAC system for Waikīkī. 

a. Overview of Hawai‘i’s energy infrastructure. 
b. Examination of appropriateness of technology. 
c. Analysis, to the extent possible, based on the results of independent work 

described in the Assessing Environmental Impacts section of Exhibit A. 
 

2. Written recommendations for the development of an environmental monitoring program 
for both the construction phase and the operating phase of a Waikīkī District SWAC 
system. 
 

3. Develop, plan, and initiate a public outreach program to facilitate information exchange 
and stronger community acceptance of the development of SWAC technology. 

a. A report on the public position of SWAC, identification of reasons for support 
and opposition, and recommendations for ways to mitigate opposition. 

b. Developing a choice model to explain public preferences and willingness to pay 
for SWAC development in Hawai‘i. 

c. Conducting a public outreach campaign. 
 

4. Technical and other appendices to explain methodologies used. 

Task 1: Evaluating the environmental costs and benefits of SWAC in Waikīkī 
To provide context for the project, we began by providing a summary of key regulations, pieces 
of legislation, and Public Utility Commission dockets that relate to renewable energy 
development and the adoption of energy efficiency measures in Hawai‘i.  Most relevant to 
SWAC are the Hawai‘i Clean Energy Initiative (HCEI) and the accompanying renewable energy 
portfolio standards (RPS) and energy efficiency portfolio standards (EEPS).  Passed in 2008, the 
HCEI is an agreement between the US Department of Energy and the state government that 
helped to establish the guidelines to move the state’s energy infrastructure away from fossil fuels.  
To reach the ultimate goal of reducing Hawai‘i’s oil consumption by 70% in 2030 (40% through 
renewable energy development and 30% through energy efficiency technologies) a number of 
milestones were agreed upon.  The renewable portfolio standard milestones were updated in 2010 
and set as: 10% of net electricity sales by December 31, 2010; 15% by December 31, 2015; 25% 
by December 31, 2020; and 40% by December 31, 2030.  Up until January 1, 2015, energy 
efficiency technologies can account for up to half of the renewable energy portfolio.  After that 
date, only renewable energy will be counted towards the portfolio.  Although SWAC is 
technically a demand displacement technology, for HCEI purposes it falls under the broader 
rubric of energy efficiency. 

As part of examining the appropriateness of SWAC technology, we compared SWAC to business 
as usual and various renewable energy and other energy efficiency options.  To do so, we 
analyzed each option in terms of: 1) generation capacity; 2) applicability to existing policy 
standards; 3) economic factors; 4) environmental and social factors; and, 5) energy and supply 
security.  Table 1 lists all resources and technologies that relate to the state’s energy system, 
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either through energy supply (e.g., fossil fuels and renewable energies) or energy demand 
reductions through energy efficiency and conservation measures (e.g., solar water heaters and 
SWAC).  The resource list was compiled from options commonly identified by Hawai‘i’s energy 
stakeholders.  The potential capacities for conventional and renewable energy generation are 
subject to debate, but we consider the estimates to be reasonable enough to allow for this analysis.  
While the numbers may be an estimate of the real numbers, we believe the potential variance 
does not discount our analysis. 

In Table 1, the first group of measures lists existing, under consideration/proposed, and potential 
capacities.  The existing capacities confirm the overdependence of Hawai‘i’s current energy 
system on fossil fuels in general and, more specifically, petroleum products.  The second column 
displays the plans or projects that have been listed or proposed by state, utilities, or other 
companies.  Finally, the third column determines the state’s potential capacity for that resource, 
regardless of the policy constraints.  In other words, it sets the limit of each resource to its natural 
availability constraint, if any.  

The second category divides the resources into those that do not meet the requirements set by 
RPS and EEPS, those that meet RPS requirements, and those that meet EEPS requirements.  Of 
course, not addressing either RPS or EEPS requirements puts the resource on hold or subject to 
extinction, as HCEI calls for new demand to be supplied by excess supply due to energy 
efficiency and for the existing fossil fuel demand to be converted into renewable fuel/energy 
demand. 

The third category comprises economic (cost) factors and is divided into capital costs, fuel costs, 
and operations and maintenance costs.  Cost factors are compared on a per-unit-of-energy basis.  
In the fourth category, resources are compared with respect to environmental and social factors.  
It is worth mentioning that the environmental impacts are considered on a global and life cycle 
basis.  For example, biofuels rank low in terms of land use as the land used to produce the 
feedstock is taken into account.  The last category evaluates the resources based on energy 
security concerns, which are basically divided into different factors that can affect the viability 
and continuity of each resource in Hawai‘i, including natural, political, and technological factors.  

In the comparisons, each source is given a ranking of “1” to “4” for each of the measures in the 
economic, environmental/social, and energy security categories.  As the table legend explains, a 
measure is ranked “1” if the source has a very negative impact or a very bad status in terms of 
that measure.  A ranking of “2” has a less negative connotation compared with a ranking of “1”.  
When a resource is considered viable with respect to a measure (or the measure is not relevant to 
that resource), then it is given a ranking of “3”.  Finally, a good status or positive impact of the 
resource on each measure is distinguished by a rank of “4”.  Some measures have no rankings of 
“4” meaning that no energy resource can improve that measure. 

The first group is comprised of petroleum products, coal (which together with petroleum products 
represents business as usual), and liquefied natural gas.  These resources can theoretically be 
exploited at any potential capacity with a capacity factor close to 100%; however, as this group 
satisfies neither RPS nor EEPS requirements, none of the fuels are considered a viable option for 
the future. 
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Table 1 
Comparison of Resource Options for Hawai‘i’s Energy Systems 

   

The second group consists of renewable energy options and is made up of geothermal, wind, 
hydro, solar, biofuels, biomass, ocean thermal energy conversion (OTEC), and wave energy.  
Currently 14% of existing and installed nameplate capacity comes from renewable energy 
sources, with wind, biofuels and biomass comprising the majority.  As opposed to fossil fuels, 
most renewable energy resources have capacity constraints which limit the maximum potential 
capacity in the state.  However, the benefits of renewable energy (availability, applicability to the 
RPS, and reduced greenhouse gas emissions) are major drivers for almost all planned and 
proposed capacities associated with this group.  The most common negative factors of renewable 
energy sources in general are their high capital costs, land use intensity, site availability issues, 
and lower capacity factor. 

The third group in the table consists of energy efficiency options (demand side management, 
solar water heaters, and SWAC).  These options are generally supposed to be the least costly 
options – the cheapest energy is that not being consumed.  Efficiency and conservation measures 
only apply to some options (e.g., SWAC and solar water heaters) and they rely on behavioral 
change or systematic change in energy production, distribution, or consumption.  As can been 
seen from Table 1, SWAC is one way of achieving greater energy conservation and efficiency.  
By cutting the electricity demand for air conditioning, it shares many positive aspects of this 
group with demand side management and solar water heaters.  Having an offshore component, 
SWAC brings some ocean impact concerns with it (see below).  However, whereas other marine 
technologies (e.g., OTEC and wave energy) are not particularly site specific, SWAC is extremely 
site specific.  SWAC can only be economically feasible in areas with a certain number of 
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subscribers to the grid, preferably with buildings larger than single-residence houses.  With its 
huge upfront capital cost and relatively large operations and maintenance costs, SWAC may not 
be as cheap and economically attractive as other efficiency and conservation options.  However, 
the reliability of SWAC gives it a solid advantage over more intermittent renewable energy 
technologies (such as wind and solar) especially for an area like Waikīkī, where there is a 
constant demand for air conditioning services. 

The environmental benefits of a Waikīkī SWAC system can be estimated from a similar project 
proposed for downtown Honolulu.  According to the final environmental impact statement, the 
Honolulu SWAC project is expected to save 77.5 million kWh/year, 260 million gallons of 
potable water, and 84 million gallons of wastewater.  Additionally, it is expected that the 
downtown project will reduce CO2 emissions by 84,000 tons, VOC by 5 tons, CO by 28 tons, 
PM10 by 19 tons, and NO2 by 169 tons (TEC, 2009). 

Despite these environmental benefits, there remains some uncertainty about the potential 
environmental impacts of SWAC – particularly with regard to the return of nutrient dense deep 
ocean water at, or close to, the surface of the ocean.  While any environmental impacts could be 
mitigated by placing the outflow pipe beneath the euphotic zone (the depth that receives enough 
sunlight for photosynthesis to occur) this increases the cost of a SWAC system.  As such, there 
was interest in assessing what, if any, impacts might occur from the release of deep ocean water 
at the ocean’s surface.  Two locations were proposed for study – offshore from Waikīkī Beach 
and the Ala Wai Canal. 

As stated in the original proposal, much of the work that Sea Grant hoped to undertake in this 
area was to be based upon independent research conducted by C-MORE.  In December 2011, C-
MORE partnered with the Leibniz Institute of Marine Sciences (Kiel, Germany) to conduct the 
first open ocean deployment of three free-floating mesocosms (Figure 2).  This collaboration – 
named BAG-1 (Biogeochemistry and Genomes) – provided the unique opportunity to not only 
test the feasibility of utilizing mesocosms in the open ocean, but also to examine the response of 
open ocean plankton assemblages to the addition of nutrients in different sized incubation vessels 
ranging from 1L bottles to 60,000L mesocosms enclosures.  The overall scientific aim was to 
study the response of ocean plankton to additions of nutrient mixtures containing NO3-, PO43-, 
Si(OH)4, and trace metals, relative to responses to nutrient mixtures containing NO3-, Si(OH)4, 
and trace metals (+P vs. –P mixtures). 

    

   Figure 2: Photographs of the Mesocosms (Photo Credit: K. Björkman) 
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The greatest response of the phytoplankton community in the mesocosms was observed with the 
addition of a “+P nutrient mixture” (BAG#6 in Figure 3).  Photosynthetic biomass and production 
were approximately twofold higher compared to the mesocosm that was amended with the “–P 
nutrient mixture” (BAG#5) and about fourfold higher with respect to the “unperturbed” 
mesocosm (BAG#4).  The addition of phosphate to smaller sized incubations (20L bottles) led to 
a faster but not greater response of the phytoplankton community.  Photosynthetic biomass and 
production were similar towards the end of the experiment and nearly fourfold higher compared 
to the controls.  Overall, the research found that the response of the phytoplankton community 
was to some extent in agreement between small- and large-scale incubations but it is anticipated 
that further investigations in future mesocosms experiments in Hawaiian waters will be needed. 

Based on the findings of these preliminary field experiments, it appears likely that an algal bloom 
could occur if nutrient dense SWAC effluent water is released into the euphotic zone.  From an 
environmental perspective, the deeper and more diffuse the effluent the better.  While it was not 
feasible for this study to conduct field experiments into the release of deep ocean water into the 
Ala Wai Canal, it is believed that releasing SWAC effluent into the Ala Wai could potentially 
result in nutrient discharge off Magic Island which, due to the generally eastward flow of water, 
could in turn lead to an algal bloom off Waikīkī Beach.  It is important to stress that no data 
currently exists to prove this thesis but, based on the results of C-MORE’s open ocean research, it 
is recommended here that further research into the discharge of deep ocean water into the Ala 
Wai be undertaken before developing a Waikīkī SWAC system that releases effluent into the 
canal. 
 

    
 

Figure 3: Total chlorophyll (upper panel) and primary production (lower panels; left from 14C 
incubations, right from photosynthesis irradiance experiments) measured in and outside the three 
mesocosms 
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Task 2: Recommendations for the development of an environmental monitoring program 
While the research conducted by C-MORE was not detailed enough to generate specific 
recommendations for a SWAC environmental monitoring program, it was possible to provide 
more general guidelines regarding the indicators that would need to be tracked for such a 
program.  Ideally, measurements of temperature, dissolved oxygen and carbon dioxide, pH, 
nitrate, chlorophyll, and total suspended particulate matter could be used to monitor the clarity, 
productivity and general health of the coastal ecosystem.  All of these parameters could be 
measured remotely and continuously, using an array of fixed moorings (at least three) deployed in 
the region of the effluent discharge compared to one mooring in a control region well outside the 
influence of the outfall.  An alternative approach would be to deploy a small fleet (at least two) of 
instrumented robots (e.g., commercially available Seagliders) that would carry an identical suite 
of sensors.  The latter approach would be preferable because it could provide a 4-D map of the 
plume and any biological response to effluent discharge even as the plume moves in time and 
space (e.g., in response to tides, coastal currents, or storms) and could map/track the plume as it 
ages.  Both the moorings and the fleet of remote sensing robots would require periodic research 
vessel support for maintenance and sensor calibration.  If a bloom were detected, it would also be 
imperative to obtain discrete water samples for more sophisticated, shore-based analysis. 

Task 3: Public outreach program 
Initially, it was proposed to develop a choice model to examine public preferences and 
willingness to pay for SWAC development in Hawai‘i.  However, based on an initial pretest of 
the survey instrument it was apparent that a substantial number of O‘ahu residents are not 
familiar with SWAC.  Indeed, only 40% (15/38) of pretest respondents had even heard of SWAC 
prior to filling out the survey.  As such, it was suspected that levels of knowledge concerning 
different project options (e.g., distance of intake pipe to shore, depth of intake pipe, location and 
depth of outflow pipe) are very low and that most members of the general public would not be 
able to make informed decisions if presented with such options in a choice model.  Given this 
assumption, we decided to use an alternative approach in which survey respondents were 
provided with a list of potential benefits and costs of installing a SWAC system in Waikīkī. 
Further, given that any SWAC development in Waikīkī will be primarily privately financed (with 
the possibility of some public support), rather than ask whether survey respondents would be 
willing to pay for SWAC directly, it was decided to ask whether they would agree with public 
funds being used for SWAC development.  Respondents were also asked whether they would be 
willing to pay more for their electricity if a greater percentage of it came from renewable sources. 

To generate the survey data, 2,000 questionnaires were mailed to O‘ahu residents.  To the greatest 
extent possible, Dillman’s Tailored Design Method was followed (Dillman, 2007).  A balanced 
stratified random sample was drawn to ensure people from all parts of O‘ahu were sampled and to 
allow for comparisons across the island (Kish, 1995).  Some regions were oversampled and others 
undersampled to ensure enough data were collected from each region. 

Of the 2,000 surveys mailed out, 541 were completed and sent back.  An additional 227 were 
returned as undeliverable.  This bad address rate of less than 14% was slightly higher than 
average (a rate of 10% is more typical) but this is likely due to the transient nature of people 
living in Hawai‘i.  Taking the undeliverable questionnaires into consideration, the survey yielded 
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a response rate of 31%.  In order to ensure the sample data accurately represented O‘ahu residents 
and to thus apply inferences drawn from the sample to the broader population, the data were first 
weighted according to strata population, gender, age, race, and income. 

  

   Figure 4: Support for SWAC in Waikīkī 

A full description of the survey findings is presented in the project’s Final Report.  Due to space 
constraints, only a few highlights are discussed here.  From the survey data we can state that a 
majority of O‘ahu residents support the idea of developing a SWAC system for Waikīkī.  As 
shown above in Figure 4, 28% of O‘ahu residents strongly support the idea and a further 34% 
support the concept.  Only 8% of respondents oppose the idea (4% strongly) and the remaining 
30% neither support nor oppose. 

As was the case with the survey pretest, a substantial number of respondents (in this case 50%) 
had not heard of SWAC prior to receiving the survey booklet.  As might be expected, people who 
had heard of SWAC prior to receiving the survey were more likely to support its development 
than people who were not familiar with the technology (Figure 5).  This is a positive finding for 
SWAC development as it indicates that increased awareness and understanding of SWAC result 
in increased support and that the information people have received to date typically engenders a 
positive attitude toward SWAC. 

  
Figure 5: Comparison of Support for SWAC in Waikīkī between O‘ahu Residents Who Were 
Previously Aware of SWAC and Residents Who Were Previously Unaware of SWAC 
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After stating whether they support or oppose SWAC development in Waikīkī, respondents were 
asked to briefly provide a reason for their answer choice.  Among supporters of SWAC, key 
reasons for support include: a belief that SWAC will be more cost-effective; an understanding 
that SWAC utilizes a renewable resource, saves energy, reduces fossil fuel use, and will thus 
contribute towards Hawai‘i being more energy self-sufficient; and an acknowledgement that it 
simply makes sense to implement SWAC in a place like Hawai‘i. 

For opponents of SWAC development in Waikīkī, the main concern was what environmental 
impacts SWAC might have on both the ocean and the land environment.  A few people were 
worried about what impacts SWAC might have on local residents and whether locals would 
receive any benefits from the installation of a SWAC system.  The potential cost of SWAC 
development was also given as a reason for opposition. 

Respondents who were undecided about whether they support or oppose SWAC in Waikīkī listed 
similar issues to those given by opponents.  The potential impact on the environment was again 
the most commonly cited reason behind a person’s response; cost and the potential impact on 
local residents were again key issues for people.  Also noted by people undecided about SWAC 
was the potential use of public money; a number of people who support the concept of SWAC do 
not agree with the use of any public funds to develop such a system.  Lastly, there were some 
concerns about the viability and maintenance of the technology. 

In an attempt to gauge the effect that knowledge of the benefits and potential impacts of SWAC 
has on public opinion, survey respondents were presented with six statements (three positive and 
three negative) and asked whether each statement affected their opinion of SWAC.  Respondents 
were asked whether each statement made them more or less supportive, more or less opposed, or 
had no effect on their position.  The following two tables show the percentage of people who 
changed their opinion when presented with this information.  That is, Table 2 lists opponents of 
SWAC, along with neutrals (those who were undecided), and shows what percentage of them 
would be more supportive of (or less opposed to) SWAC if they knew about three potential 
benefits of the technology. 

Table 2 
Effect of Knowing the Benefits of SWAC on the Opinion of SWAC Opponents/Neutrals  

 Statement Opponents 
% More Supportive 

Neutrals 
% More Supportive 

 Reduce the amount of energy used by buildings 
connected to a SWAC system by 30% 

11% 58% 

 Reduce fresh water use by 110 million gallons a 
year (1% of what O‘ahu uses) 

20% 69% 

 Reduce CO2 emissions by 120,000 metric tons 
(1% of what O‘ahu uses) 

31% 62% 

As can be seen from Table 2, opponents and neutrals have very different reactions when told of 
the benefits of SWAC.  Upon hearing of each benefit, a majority of neutrals became more 
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supportive (or less opposed).  However, a far smaller number of opponents changed their position 
when informed of the same benefits.  Knowing that SWAC reduces CO2 emissions was the fact 
most likely to change the minds of opponents, but even then only about one-third of opponents 
became more supportive/less opposed.  Only one in five opponents stated that knowing about 
SWAC’s fresh water savings would positively affect their opinion of SWAC and just over one in 
ten stated that knowing of the energy savings would make them more supportive/less opposed to 
SWAC.  These data imply that, among opponents, simply providing them with facts about the 
potential benefits of SWAC will do little to change their position.  On a more positive note, 
presenting the same information to people who are undecided does appear to go a long way in 
making them more supportive (or at least less opposed) to SWAC. 

In order to look at the effect on public opinion of potential negative impacts of SWAC, a similar 
analysis was conducted on those who favor a Waikīkī SWAC project along with those who were 
undecided.  Table 3 shows the percentage of supporters and neutrals who stated they would be 
less supportive (or more opposed) to SWAC if the following potential impacts occurred. 

Given the Waikīkī SWAC project is still at a conceptual stage, it is difficult to know the exact 
impacts of such a project.  It is safe to assume there will be some disruption to traffic, but the 
likelihood of reef damage or the formation of algae off Waikīkī Beach is not yet known and, as 
mentioned above, it is possible that any environmental damage could be avoided or mitigated 
almost entirely depending on project design.  As such, these statements were phrased as 
hypotheticals.  Still, the data implies that should such impact occur then one might expect public 
support for SWAC in Waikīkī to drop substantially.  As shown in Table 3, 64% of supporters and 
75% of those undecided would be either less supportive (or more opposed) to SWAC should it 
damage Waikīkī’s reef.  Similarly, 74% of supporters and 62% of those undecided would view 
SWAC less favorably if it resulted in algae to form off Waikīkī Beach. 

Table 3 
Effect of Knowing the Impacts of SWAC on the Opinion of SWAC Supporters/Neutrals  

 Statement Supporters 
% Less Supportive 

Neutrals 
% Less Supportive 

 If SWAC caused traffic disruption for up to six 
months during construction 

22% 41% 

 If SWAC caused minor damage to Waikīkī’s reef 
during construction 

64% 75% 

 If SWAC caused algae to form off Waikīkī Beach 74% 62% 

In addition to the mail survey, we also conducted interviews with 15 key informants to obtain in-
depth qualitative information about stakeholders’ attitudes towards SWAC.  Interviewees were 
either knowledgeable about SWAC or were people who might be affected by its development.  
The interviews enabled us to identify common themes and concerns about SWAC, gain insight 
into how SWAC is perceived by key stakeholders, and better understand any native Hawaiian 
cultural concerns that may exist concerning the development of SWAC in Waikīkī.  Lastly, we 
held a public meeting in July 2012 to present the results of the mail survey to local residents. 
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Task 4: Appendices 
Two appendices were attached to the final report: a copy of the public opinion mail survey, and 
the semistructured interview protocol used for stakeholder interviews.  In addition, we created a 
UH Sea Grant SWAC website that can be accessed at http://sct.seagrant.soest.hawaii.edu/swac.  
The website is hosted by UH Sea Grant’s Center for Sustainable Coastal Tourism. 

Project Conclusion 
Our analysis shows that while SWAC may not be as cheap and economically attractive as other 
efficiency and conservation options (due to significant upfront capital costs), its consistency and 
reliability provides it with a solid advantage over more intermittent renewable energy 
technologies (such as wind and solar).  This is especially true for a highly developed tourist area 
like Waikīkī, where there is a constant demand for air conditioning.  That being said, it is 
important to be aware that there exists the potential for algal growth in coastal waters should the 
SWAC outflow pipe be positioned too close to the surface.  While it was not possible for this 
project to conduct field experiments into the release of nutrient dense deep ocean water into the 
Ala Wai Canal, given the results of the open ocean experiments, it is recommended here that 
further research into the release of deep ocean water into the Ala Wai is undertaken before 
developing a Waikīkī SWAC system that discharges into the canal. 

A majority (62%) of O‘ahu residents support SWAC development in Waikīkī.  This number 
increases to 71% among people who have previously heard of SWAC indicating that the 
information they have received to date has engendered a positive view of SWAC.  On the whole, 
O‘ahu residents believe that SWAC will save energy and thereby reduce Hawai‘i’s dependence of 
fossil fuels.  However, there exists some concern about both the potential environmental impacts 
of SWAC and the cost of the system, particularly when it comes to the spending of public funds. 
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