

Interagency Field Test & Evaluation An Introduction

Wind Turbine/Radar Interference Defined

Wind turbines have been proven to interfere with radar operations (Air Traffic Control, Aerospace Surveillance, Air Defense, Weather, etc.). The impairments caused by wind turbines on radar span a range from creating clutter and reducing detection sensitivity to obscuring potential targets (among others). These effects on radar systems can inhibit target detection, generate false targets, interfere with target tracking, and impede critical weather forecasts.

This Interagency Team is Committed to Eliminating Wind Turbine/Radar Interference as a Barrier to Wind Energy Development

Outline

Background

- Program Overview
- Field Tests
- Conclusions
- Questions

Surveillance Radars Are Key Enablers

Success = Maximized Interagency Partnership

Wind Turbine Trends

Growing in Size...

100 Meter Blades Now in Development

...Growing in Number

stallations

Source: AWEA

Source: DOE

"20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply"

Wind Energy / Radar Challenges Overlap

Of 214 total radars here, 83 of the sites (or 39 %) already had Wind Turbines within Radar Line-of-Sight (RLS)

Wind Turbine Impacts

Turbines are growing in size and number

- Tip speeds over 225 mph
- Blades more than 50 m long
- Wind farms with 100s of turbines

Impacts on Radars:

- Decreased Sensitivity (P_D)
- False Targets (P_{FA})
- Corrupted Track Quality

Raises Concerns for:

- Flight Safety
- " Homeland Air Security
- Weather Operations

Industry Proposed Mitigation Options

Reduced Signal Turbines

Replacement Radar

Radar Upgrades

Wind Farm Siting

Augmentation Radar

C2/Automation Upgrades

Outline

- Background
- Program Overview
 - Field Tests
 - Conclusions
 - " Questions

Formation of IFT&E Program

- DOE and DOD co-sponsored a interagency workshop in September 2010; stakeholders identified 26 unique research opportunities
- The National Security Staff Sub-Interagency Policy Committee on Air Domain Awareness facilitated interagency funding from DOE, DOD, DHS, and DOT/FAA
- Path forward focuses on:
 - . Testing and evaluating mature technologies in the near-term
 - . Gathering data for a mission analysis to guide future investments

The IFT&E Program Team

Enabling Partners

Wind Farm Owners/Developers, Radar Manufacturers, City, County, State, Local, Tribal, and Other Private Industry Stakeholders

Project Strategy

Interagency Field Test & Evaluation

Evaluate wind turbine impact and industry mitigations

2-year, 3 flight campaign, jointly funded program

- . CARSR (MN), ASR-11 (TX), ARSR-4 (TX)
- Invites to selected mitigation technologies
 - . Selected 11 of 16 proposed concepts to assess
- System analysis of mission impact
- Program Goals
 - . Characterize impact of wind turbines on NAS radars
 - . Assess mature industry-proposed mitigation technologies
 - Increase understanding for developing future mitigations options; develop a library of data

Current IFT&E Scope

- Campaign 1: CARSR at Tyler, MN
 - C Speed Lightwave
 - ✓ . SRC LSTAR(V)3
 - ✓ . Raytheon Processor Upgrades
- Campaign 2: ASR-11 at Abilene, TX
 - ✓ . Terma Scanter 4002
 - . Aveillant CH-Infill
 - ✓ . BAH clutter cancelling posts
 - ✓ . Raytheon Processor Upgrades

- Campaign 3: ARSR-4 at King Mountain, TX
 - . Qinetiq
 - . LM TPS-77
 - . Raytheon X-band Infill
 - . Sensis Saab Radar Upgrades

✓ Confirmed Participation

Outline

- Background
- Program Overview

Field Tests

- Conclusions
- " Questions

Field Test Overview

Tyler, MN CARSR (QJC) Area Orientation

QJC Vendor Surveillance Area

Red Box: Assigned Surveillance Area (22 x 22 nmi)

	Wind Turbines	with Telemetry	
Total	2,104	430	
In Line of Sight	1,128	343	
In Box	459	229	

Plots from CARSR

Surveillance Area Coverage Success

GPS

Points collected: 450000+

Points in test area: 250000+ (> 55%)

Abilene, TX (KABI) Area Orientation

KABI Vendor Surveillance Area

Key KABI Area Wind Farms

Plant Name	MW	Units	Туре	Owner	
Buffalo Gap	523.3	67	Vestas	AES Wind Generation	
		74	Siemens		
		155	GE		
Trent Mesa Wind Farm	150	100	GE	American Electric Power	
South Trent Mesa	101.2	44	Siemens	Babcock & Brown	
	585.3	176	GE		
Sweetwater		81	Siemens		
		135	Mitsubishi		
Champion (Roscoe II)	126.5	55	Siemens		
Inadale (Roscoe IV)	197	197	Mitsubishi	E.On Climate &	
Pyron (Roscoe III)	249	166	GE	Renewables	
Roscoe Wind Farm	209	209	Mitsubishi		
Snyder Wind Project	63	21	Vestas	Enel North America	
Lone Star I and II	400	200	Gamesa	Horizon Wind Energy	
Turkey Track Energy Center	169.5	113	GE	Invenergy	
Callahan Divide Wind Energy Center	114	76	GE		
Horse Hollow Wind Energy Center	738.5	293	GE	NextEra	
		130	Siemens		
Hackenberry Wind Project	165.5	72	Siemens	RES Americas	

Critical Wind Turbine Data Requested from Wind Farm Owners/Operators

- Facilitating collection of wind farm data
 - . Points of contact
 - . Static data (for each turbine)
 - Turbine location (latitude, longitude, elevation)
 - Manufacturer, model/type
 - Tower height (AGL) and blade length
 - " Materials
 - . Dynamic data (for each turbine)
 - " Timestamp
 - " Yaw
 - " Blade pitch
 - " Blade speed (RPM)
 - . Meteorological tower data during test
 - Wind speed at hub height
 - Wind direction

King Mountain, TX Area Planning

TBD

Outline

- Background
- Program Overview
- Flight Testing

Questions

Conclusions

- Wind turbines cause problems for most radars
 - . Several mitigation strategies proposed
- IFT&E program established to assess alternatives
 - . Field tests to gather high fidelity data
- First IFT&E flight campaign successfully completed
 - . 140+ flight hours
 - . 4 radar systems with >70+ hours data per radar
 - . 430 wind turbines providing SCADA data
 - . Analysis still being completed
- Preparing for second test in Abilene, TX (Oct-Nov 12)
- Third test schedule at King Mountain, TX (Apr-May 12)

Questions?

Contact Information

Bryan Miller, Lt Col USAF (Retired) BEM Int'l, LLC

Consultant / IFT&E Site Plan Lead

Contractor to Sandia National Laboratories

Phone: 307-920-0215

Bryan.Miller@bem-intl.com

