Asia Pacific Clean Energy Summit

Ocean Energy Panel

LOCKHEED MARTIN

Tim Fuhr Director, Ocean Energy

August 14, 2012

Lockheed Martin

- A Global Security Company
 - Focus on research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services
- 126,000 Employees
- 63,000 Scientists, Engineers and IT Professionals
- Operations in 1,000 Facilities, 500 Cities, 50 States and 75 Countries
 - More than 300 Partnerships Across the Globe

We Do What Hasn't Been Done... A Passion for Innovation

Lockheed Martin Ocean Energy

Ocean Thermal Energy Conversion

Exploits existing ocean thermal gradients to drive a heat engine to produce electricity

- Long-Term Focus
- OTEC Plant Designs
- Discriminating Technology
 - Heat Exchangers

Coldwater Pipe
 Significant Technology
 Investments with Broader

Commercialization Potential

Tidal Energy

Captures energy from tidal flows to rotate submerged turbinegenerators to produce electricity

- Atlantis Resources Relationship
- •Yaw Drive Development
- ETI and Turbine Engineering Programs
- Canada Bay of Fundy Project
- Supply and Support of Tidal Turbine Systems

Wave Energy

Transforms wave motion to electricity from device arrays near the coasts

- Ocean Power Technologies (OPT) Relationship
- Product Design Support
- DOE contract
- •Supply and Support of Wave Energy Converters (WEC)
 - Victoria, Australia & Reedsport, OR projects

Operating Across the Ocean Energy Sector

Why Lockheed Martin in Ocean Energy?

Experience & Innovation

- Proven Marine Design Expertise
- Advanced Modeling and Simulation
- Research & Development
- Technology Innovations
- Design for Manufacturing

Marine Engineering Domains: 10,000+ SMEs

Proven Performance

- Large Scale, Complex Systems Integration
- Ocean Based Products with Proven System Performance
- Experienced Program Management
- Global Footprint and Ability to Achieve Scale
- Design Production Operations and Support

Bringing Experience to Deliver Ocean Energy Solutions

LM OTEC Progression

1st 100MW Plant

Commercial Operations

Many Years of Research... 5+ Years Focused Development Ready for Transition to Deployment

OTEC Offshore Pilot Plant

Major Component	Pilot Plant Approach
Platform	Modified Standard Offshore Config
Turbine/ Generator	Non-Developmental
Pumps	Non-Developmental
Power Cable	Non-Developmental
Instrumentation & Control (I&C)	Modified Commercial
Heat Exchangers (HX)	Technology Scale-Up
Composite Cold Water Pipe (CWP)	Finalize Development and Deployment
CWP System Elements	Detailed Design & Technology Scale-Up

R&D Focused on HX and CWP ... Pilot Plant Build is Next Step

Wave Energy Program in Hawaii

- PB-40 early prototype installed off Marine Corps Base Hawaii (MCBH)
 - First grid-connected wave energy system in the U.S.
 - Survived severe storms & confirmed models
 - Validated design for scale-up to higher power buoys

 Now deploying larger devices to better capture available wave energy resources

PB150 Deployment in Scotland

PB150 Float Assembly

PB150 Bridge Assembly

Rated power output: 150 kw Peak power output: 866 kw

PB150 assembled on wharf

PB150 Unit Deployed in Scotland and 2nd Unit Ready for Deployment in Oregon

ð

Portland, Victoria, Australia Wave Power Demonstration Project

- Approvals, licences and funding during 2012 / 2013
- > 19 MW in 3 development stages

Stage 1 – 0.5 MW – 2013 / 2014 Stage 2 – 5.0 MW – 2014 / 2015

Stage 3 – 13.5 MW – 2016/ 2017

- Supported by Federal grant \$66.5M max
- Grid connected; 25 year operating life
- Located within State waters

- > Sufficient power to fulfill energy needs of approximately 10,000 homes
- Project Web Site: <u>http://victorianwaveproject.com.au/</u>
- Role of OPT: Power Buoy Design; Provide Power Buoy technology, Provide Power Take-Off (PTO), Underwater Substation
- <u>Role of LM</u>: Power Buoy Design Support; Buoy Component Production; System Integration & Test; Program Management

Atlantis – LM Tidal Energy Efforts

Engineering

- Turbine Design and Analysis
- Performance Modeling
- Yaw Drive Development

• UK Energy Technology Institute (ETI) Tidal Energy Converter (TEC) Project

Testbeds

- EMEC, Scotland [AR-1000]
- FORCE, Canada [Test Berth]
- NAREC, UK [AR-1000]

Focus Projects

•MeyGen, Scotland: 400MW project with 85 MW Stage 1, FEED in Progress, Construction 2014
•Mundra, India: 250MW project, FEED in progress
•Projects in planning - Canada, Bay of Fundy; others

Atlantis Resources 1 MW Horizontal Axis Tidal Turbine

- Designed for very rough offshore wave exposed locations (high survival state)
- ARC/ABB designed power conditions system full UK & European grid compliant
- Full onboard health monitoring system with fiber telemetry remote link

Key Statistics

Water Speed	
Rated operational	2.65 m/s
Maximum operational	3.4 m/s
Output	
Rated output	1,000 kW @ 2.65 m/s
Expected capacity factor range	35-50%
Shaft speed	6-15 rpm
Operating Conditions	
Design depth of operation	25-60m (max)
Minimum clearance from surface (LAT)	7m
Expected life of turbine nacelle	20 years (structural)
Maintenance cycle	Overhaul every 5 years
Deployment and Support	
Method	Gravity Base (GBS) or mono-pylon

Advantages of Ocean Power

- Close to Population centers on the coast, with minimal land usage and sight impact
 - Transmission costs and losses minimized
 - Perfect for islands and coastal land
- Predictable Power
 - OTEC is baseload, Wave and Tidal are periodic/predictable
 - Not prone to short-term variations like solar/wind
 - Able to predict output with high accuracy, often days in advance

Challenges

- Transition from Research / Pre-Commercial to Commercialization
 - Recognizing and leveraging the tipping points
- Testbeds that Advance Industry toward Commercialization
- Support for technology development and initial projects
 - Incentives and government support
 - Risk sharing