# **Report to the 2009 Hawai'i State Legislature**

# Lead by Example State of Hawai'i Agencies' Energy Initiatives FY 2007-2008



State of Hawai'i Department of Business, Economic Development & Tourism January 2009

Hawaii. Dept. of Business, Economic Development, and Tourism. Strategic Industries Division. Lead by example: State of Hawaii agencies' energy initiatives. Honolulu: 2007-.

Report to the 2009 Hawaii State Legislature. Annual.

1. Public buildings-Energy conservation-Hawaii. TJ163.5.B84.H39.2009

## TABLE OF CONTENTS

| XECUTIVE SUMMARY 1                                                                |
|-----------------------------------------------------------------------------------|
| EAD BY EXAMPLE:                                                                   |
| TATE OF HAWAI'I EXECUTIVE AGENCIES' ACHIEVEMENTS IN ENERGY 4                      |
| The LBE Initiative                                                                |
| Executive Agency Electricity Consumption                                          |
| Electricity Costs by State Agencies                                               |
| Efficiency in Buildings 16                                                        |
| Utility Rebates Save Money at State Facilities                                    |
| Highlights of Current State Energy Activities                                     |
| Plans for Future LBE Activities                                                   |
| Individual Agency Responses                                                       |
| Consolidated LBE Reports from State of Hawai'i Executive Agencies for Fiscal Year |
| 2008 Relating to the Statutory Requirements of Act 96 and Act 160 of 2006 31      |

# APPENDICES

| Appendix 1: UH Community Colleges Waste and Pollution Prevention | A-1  |
|------------------------------------------------------------------|------|
| Appendix 2: DHHL Vehicles and Fuel Data                          | A-6  |
| Appendix 3: Department of Education Vehicles and Fuel Data       | A-8  |
| Appendix 4: DOT-Airports Efficiency Projects and Vehicles Data   | A-13 |
| Appendix 5 DOT-Harbors Vehicles and Fuel Data                    | A-12 |
| Appendix 6: DOT-Highways Vehicles and Fuel Data                  | A-30 |
| Appendix 7: Public Safety Division Vehicles and Fuel Data        | A-58 |
| Appendix 8: NELHA Vehicle Inventory and Fuel Economy             | A-67 |

## Lead by Example Report FY 2007-2008

## **EXECUTIVE SUMMARY**

The Lead by Example (LBE) initiative began in 2006 in response to legislative and executive mandates to change the way state executive branch agencies use energy in operations and facilities. These efforts acknowledge the high cost of electricity in Hawai'i, the energy security benefits of alternative fuel use, and the many opportunities for increasing energy efficiency in new and existing state offices, facilities and schools. The legislation also required incorporating environmentally preferable purchasing into state operations.

Fully implemented, the LBE initiative represents an important step in achieving long-term economic and environmental benefits for the state.

State executive branch agencies consumed slightly more electricity in each of the past two fiscal years, but that electricity has grown significantly more expensive due to the escalating price of oil, which hit a record high of \$147 in July, 2008. Between 2007 and 2008, kWh consumption decreased 1.2%, but costs increased 19.4% due to the cost of imported oil. The impact of the world oil market is more striking when comparing current figures to those of 2005: state agencies used only 3.6% more electricity in 2008 than in 2005, but that electricity cost 55.6% more. Hawai'i relies on imported petroleum for about 88% of its primary energy.

State of Hawai'i executive branch agencies made progress in efficiency, renewable energy, transportation, and environmentally preferable practices during 2008. Some highlights follow.

## Efficiency

- Six state buildings have received Energy Star® awards, acknowledging that they rank in the top 25% of similar buildings nationwide.
- The Department of Accounting and General Services (DAGS) is working on four projects which are expected to receive a LEED Silver rating: Mānoa Public Library, Kohala Public Library, Keaukaha Military Reservation, and the Maui Regional Public Safety Complex.
- The Department of Public Safety (PSD) is relocating Maui CCC to Pu'unene, a LEED Silver project.
- DAGS is retrocommissioning 11 buildings in pilot projects on four islands.
- The Airports Division of the Department of Transportation (DOT-Airports) has saved 600,000 kWh annually with taxiway lighting and signage improvements.
- DAGS' Leeward Homeless Shelters feature solar water heating for 80 units plus the laundry.
- Solar water heating has been installed on facilities on Kaho'olawe.
- Library lighting retrofits: 12 completed, 21 under design.

- The Department of Education (DOE) now designs all new facilities to meet the requirements of LEED Silver, and all consultants need a LEED Accredited Professional on the team. The 'Ewa Makai Middle School, scheduled to begin construction in early 2009, will be the first DOE new school where the entire campus is designed to meet LEED Silver certification.
- The Department of Agriculture secured funding, including general obligation bonds, for retrocommissioning, lighting improvements and window tinting.
- 'Iolani Palace's improved chiller system is being designed by consultants to the Department of Land and Natural Resources (DLNR); it will improve efficiency while preserving the Palace's priceless cultural and historical artifacts.
- DOT-Airports is considering a cold seawater air conditioning system for the enclosed areas of Kona International Airport.
- The Hawai'i Public Housing Authority has issued a request for proposals for performance contracting at 5,363 federally-funded housing units.
- State agencies have received more than \$4.2 million in efficiency rebates from the Hawaiian Electric Company (HECO) and its subsidiaries, with cumulative dollar savings totaling \$9.9 million and cumulative electricity savings of 55.3 million kilowatt-hours. This is enough to power 6,700 households for a year.

# Renewables

- DAGS is negotiating with a third party provider to install photovoltaic (PV) arrays on its Central Services facilities
- DOT-Airports awarded a competitive contract to install photovoltaics at ten transportation facilities statewide, including seven airports, plus the Foreign Trade Zone.
- DOE will install 30-50 kW photovoltaic systems on schools on four islands, using third-party contracting.

## Transportation

- State vehicles are utilizing E-10 Unleaded gasoline which contains 10% ethanol; state law requires its sale.
- Many state vehicles are also flexible-fuel capable, and could use higher percentages of ethanol if they became available.
- The state offers a pricing preference for biodiesel.

# Purchasing Practices

- Most departments already utilize life-cycle cost analyses, purchase efficient equipment such as those with the Energy Star® label, and take advantage of utility rebates.
- The State Procurement Office (SPO) continues to provide price and vendor listings which include Energy Star®, recycled, or environmentally preferred products.

- For products and supplies not included on the SPO price lists, purchasing agencies are still required to preferentially order recycled products, oil products with greater recycled content, and biofuels.
- The Department of Business, Economic Development, and Tourism (DBEDT) Green Cleaning Project will demonstrate environmentally preferable cleaning projects at the University of Hawaii (UH), McKinley High School and Kapālama Elementary School.
- DAGS is incorporating environmentally preferable Green Seal and equivalent products in its custodial program.
- Information on recycled and environmentally preferable products has been prepared by DBEDT and is available to state agencies.

## Leadership in Energy and Environmental Design

Hawai'i remains a member of the U.S. Green Buildings Council (USGBC), the nonprofit entity which administers the Leadership in Energy and Environmental Design (LEED) program. DAGS is developing LEED application guidelines to be used by state agencies.

To date, four state facilities have been certified as meeting LEED standards; the UH John A. Burns School of Medicine building received confirmation as LEED Certified shortly after the close of FY07-08. In addition, buildings have been completed and are awaiting certification by USGBC: the UH-Hilo Student Life and Events Complex is pending confirmation as LEED Gold, and UH- Mānoa Frear Student Housing, is pending LEED Silver.

**LEED** Platinum

• Natural Energy Laboratory of Hawai'i Authority Gateway Energy Center LEED Certified

- DOE Waipahu Intermediate School Cafeteria
- UH-Hilo 'Imiloa Astronomy Center of Hawai'i
- UH-Mānoa John A. Burns School of Medicine

A significant number of additional buildings which are anticipated to meet LEED Silver standards are either being planned or are in the design phase, while the following state facilities are currently under construction or construction bids have been awarded, and are expected to be rated by LEED.

- North Kohala Public Library (Silver)
- Mānoa Public Library (Silver)
- UH-Hilo Sciences and Technology Center (Silver)
- Honolulu International Airport Lounge (Commercial Interiors)

## LEAD BY EXAMPLE: STATE OF HAWAI'I EXECUTIVE AGENCIES' ACHIEVEMENTS IN ENERGY

This report responds to legislative and executive mandates issued in 2006 which require state agencies to implement a variety of energy programs now known as the Lead by Example (LBE) initiative. A number of requirements were established by Act 96, SLH 2006, Part III, which reflects Administrative Directive 06-01, issued by Governor Linda Lingle on January 20, 2006. This law directs state agencies to improve energy, water and resource efficiency in state facilities, increase fuel efficiency, and use alternative fuels in state vehicles.

In addition, Act 160, Section 168.5, SLH 2006, requires agencies to report their electricity consumption, the steps taken to reduce energy use, and their plans for future reductions. Although not mandated by law, the costs of purchasing utility electricity have also been compiled.

This Lead by Example report provides data on electricity use and costs as well as highlights of state agencies' energy activities under the LBE initiative. Executive agencies were invited to submit reports containing information required by the laws; these reports have been consolidated by the Department of Business, Economic Development, and Tourism (DBEDT). The consolidated reports, which are attached, list all agencies' actions under each section of Acts 96 and 160, SLH 2006.

The Lead by Example effort was kicked off at a meeting of all cabinet members, convened by DBEDT, on May 11, 2006. Since that initial meeting, agencies developed a framework for planning, implementing and reporting energy efficiency activities. State agency personnel have been trained and received technical assistance as needed. The agencies have set energy-savings targets and are developing tools which will enable their goals to be reached.

Agency representatives formed an LBE Leadership Group to coordinate these actions, supported by three Working Groups. These Working Groups address Buildings, Transportation, and Environmental Practices and Procurement. Each Working Group develops plans and recommendations to be reviewed by the Leadership Group, which is composed of high-level representatives of executive departments and the University of Hawai'i. The Leadership Group members have the authority to ensure efficient communication and the commitment to develop effective policies and plans for each department.

#### The LBE Initiative

Fiscal year 2008, the third year of the LBE initiative, marked an increasing emphasis on energy efficiency which was made even more critical by soaring petroleum prices and resulting high electricity costs. New state buildings are being constructed to higher efficiency standards; existing ones are receiving equipment retrofits and being retrocommissioned to ensure proper operation of energy systems. Several agencies are adopting solar technologies, particularly photovoltaics and solar water heating.

Executive agencies continued training their personnel in subjects such as building commissioning, performance contracting, financing, green building design and construction, energy-efficient equipment, and photovoltaics. A total of 87 workshops and other events relating to Lead by Example topics were held in FY08, attracting at least 1,960 participants, including at least 251 from state agencies. In some cases, DBEDT provided funds so that other executive agencies' staff members could attend the training.

Among the challenges of the LBE initiative are consistency in data collection and ensuring both ease and accuracy in recordkeeping. For the first time this fiscal year, electricity consumption and billing information were acquired directly from the utilities and compiled by statisticians in DBEDT's Research and Economic Analysis Division. Previously, the agencies provided data from their own records. The change in data submission has resulted in some discrepancies with the reporting from previous years, but should improve consistency going forward. Fiscal Year 2005 data will continue to serve as the baseline for comparison purposes.

Table 1 outlines the targets for the Lead by Example which have been set in response to the legislative and administrative mandates noted above.

This report summarizes the achievements and activities of executive agencies as they "lead by example" in 2008. The 26 participating agencies include:

Department of Accounting and General Services (DAGS) Department of Agriculture (DOA) Department of the Attorney General (AG) Department of Budget and Finance (B&F) Department of Business, Economic Development, and Tourism (DBEDT) Department of Commerce and Consumer Affairs (DCCA) Department of Education (DOE) Department of Hawaiian Home Lands (DHHL) Department of Health (DOH) Department of Human Resources Development (DHRD) Department of Human Services (DHS) Department of Labor and Industrial Relations (DLIR) Department of Land and Natural Resources (DLNR) Department of Public Safety (PSD) Department of Taxation (DOTAX) Department of Transportation—Airports Division (DOT-Air) Department of Transportation—Harbors Division (DOT-Har) Department of Transportation—Highways Division (DOT-Hwy) Foreign Trade Zone (FTZ) Hawai'i Community Development Authority (HCDA) Hawai'i Health Systems Corporation (HHSC) Hawai'i Housing Finance and Development Corporation (HHFDC) Hawai'i State Public Library System (HSPLS) Hawai'i Tourism Authority—Convention Center (HTA/CC) Natural Energy Laboratory of Hawai'i Authority (NELHA) University of Hawai'i system (UH)

| Action Item                                                                                            | Impact<br>Short Term<br>0-3 yrs. (FY08)                                  | Impact<br>Long Term<br>10 yrs (FY2015)                                    |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Provide education programs on energy efficiency                                                        | 3% reduction in kWh                                                      | 6% reduction in kWh                                                       |
| R&M/O&M facilities in place as of FY05 (e.g., lighting retrofits, purchasing more efficient equipment) | 6% reduction in kWh                                                      | 20% reduction in kWh                                                      |
| LEED Silver for new construction                                                                       | 30% reduction in kWh for each<br>new building built to LEED<br>Silver    | 30% reduction in kWh for each<br>new building built to LEED<br>Silver     |
| Increase energy efficiency and fuel<br>diversification of State vehicles as of<br>FY 05                | 5% reduction in petroleum consumption                                    | 12% reduction in petroleum consumption                                    |
| Increase availability of environmentally preferable products to state agencies                         | 3% increase in availability of<br>environmentally preferable<br>products | 12% increase in availability of<br>environmentally preferable<br>products |
| Increase procurement of<br>environmentally preferable products                                         | 5% increase in procurement of<br>environmentally preferable<br>products  | 12% increase in procurement of<br>environmentally preferable<br>products  |

## Table 1. Lead by Example Targets (Baseline FY 2005)

#### Executive Agency Electricity Consumption

Electricity use for State of Hawai'i executive agencies is depicted in Figure 1<sup>1</sup>. In 2008, the agencies consumed a total of 683.98 million kilowatt-hours of electricity, compared to 692.46 million kWh in 2007, 676.29 million kWh in 2006 and 660.69 million kWh in 2005. This represents a decrease of 1.2% between 2007 and 2008, though electricity consumption increased by 3.6% between 2005, the baseline year, and 2008.



Figure 1. Comparison of State Agencies' kWh Consumption

Energy use varies widely within individual agencies. Some agencies reported reductions in energy use; others noted minimal increases and a few used significantly more electricity. Each agency's kWh consumption is summarized in Figure 2.

Many agencies have responsibility for their own electric bills, while others' consumption are aggregated under the Department of Accounting and General Services (DAGS). Four agencies account for most of the electricity used by the executive branch: the University of Hawai'i (UH) campuses, the Department of Education (DOE), the Airports Division of the Department of Transportation (DOT-Air), and DAGS.

<sup>&</sup>lt;sup>1</sup> The data shown in Figure 1 and subsequent figures and tables exclude the Hawai'i Public Housing Authority (HPHA) and the Hawai'i Housing Finance and Development Corporation (HHFDC), as well as their predecessor agency, Housing and Community Development Corporation of Hawai'i (HCDCH), due to difficulties interpreting billing data.

Roughly 80% of the more than 2,600 buildings owned and operated by the state government are on O'ahu.

As shown in Figure 2, the four agencies which consume the most electricity show increases ranging from 3.3% to 9.2% since 2005. From FY 05-08, seven agencies were able to decrease their electricity consumption, and six others held their consumption increases at or below 3%. A few agencies showed much greater fluctuations.



## Figure 2. Comparison of Fiscal Year kWh Consumption, by Agency Showing Percentage Change from FY05 to FY08

The FTZ's 12.1% increase in electricity consumption is due in part to the construction in 2005 of 12,000 square feet of new office space, and to the addition of a new security system in 2008, including a \$100,000 investment in lighting.

A number of new capital improvement projects have added to DOE's overall energy consumption. New portables were connected to existing schools' electrical meters at 19 campuses on three islands, and new facilities—including an administration building, a cafeteria expansion, and two eight-classroom buildings—were connected to existing meters at four schools on O'ahu. The resulting electricity consumption increases were somewhat offset by DOE's ongoing lighting and HVAC retrofit programs. It should be noted that several agencies' utility records are consolidated into DAGS' report since they are not separately billed. These include the departments of Budget and Finance (B&F), Human Resource Development (DHRD), Taxation (DOTAX), and some offices within the departments of Business, Economic Development, and Tourism (DBEDT).

Tables 2 and 3 provide information on individual agencies' electricity consumption and the changes from year to year since FY05. The reported number of kilowatt-hours consumed annually is provided in Table 2, while Table 3 presents the differences among years in kWh as well as percentage change.

| Agency  | FY05 kWh    | FY06 kWh    | FY07 kWh    | FY08 kWh    |
|---------|-------------|-------------|-------------|-------------|
| AG      | 35,420      | 34,798      | 34,945      | 35,849      |
| DAGS    | 48,747,915  | 50,265,161  | 50,874,228  | 53,238,727  |
|         |             |             |             |             |
| DBEDT   | 496,413     | 358,760     | 610,347     | 546,138     |
| DCCA    | 1,717,975   | 1,453,620   | 1,584,580   | 1,619,786   |
| DHHL    | 2,283,061   | 2,494,168   | 2,989,292   | 3,391,736   |
| DHS     | 3,860,312   | 4,013,572   | 4,046,352   | 3,922,472   |
| DLIR    | 320,792     | 410,934     | 394,799     | 373,783     |
| DLNR    | 3,470,071   | 3,448,349   | 3,635,056   | 3,648,777   |
| DOA     | 2,825,754   | 2,920,780   | 3,309,250   | 2,845,190   |
| DOD     | 6,703,102   | 6,900,527   | 7,143,118   | 6,927,797   |
| DOE     | 143,577,331 | 144,166,024 | 148,219,684 | 148,275,306 |
| DOH     | 25,671,439  | 25,625,754  | 25,404,687  | 25,332,669  |
| DOT-Air | 128,101,116 | 129,247,286 | 131,473,824 | 134,105,434 |
| DOT-Har | 10,436,590  | 10,708,555  | 11,364,562  | 11,237,166  |
| DOT-Hwy | 28,829,477  | 28,204,537  | 28,216,833  | 28,009,743  |
| FTZ     | 921,920     | 1,044,160   | 1,011,840   | 1,033,600   |
| HCDA    | 1,150,027   | 252,285     | 322,151     | 318,810     |
| HHFDC   | 3,053,669   | 3,150,741   | 5,464,012   | 5,866,596   |
| HHSC    | 20,127,174  | 18,553,340  | 18,804,930  | 18,146,647  |
| HSPLS   | 8,483,680   | 8,512,526   | 8,879,387   | 8,726,116   |
| HTA-CC  | 7,389,600   | 8,715,000   | 8,056,800   | 7,848,600   |
| NELHA   | 4,477,349   | 3,917,223   | 4,035,528   | 4,178,093   |
| PSD     | 21,877,323  | 21,673,132  | 20,839,695  | 20,431,439  |
| UH      | 186,135,303 | 200,215,951 | 205,742,644 | 193,917,022 |
| Totals  | 660,692,813 | 676,287,183 | 692,458,544 | 683,977,496 |

 Table 2. Utility Electricity Consumption by State Agencies<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Electricity consumption and cost data for the Hawai'i Department of Defense (DOD), the Hawai'i Public Housing Authority (HPHA) and the Hawai'i Housing Finance and Development Corporation (HHFDC) were obtained from the electric utilities. Due to difficulties interpreting the data for HPHA, HHFDC and the Housing and Community Development Corporation of Hawai'i (HCDCH) which preceded their formation, however, electricity and cost data for public housing agencies are not included in this year's report. Neither DOD nor HPHA submitted a Lead by Example report and are thus not included in the text of this combined state agencies' report.

| Agency           | FY05-<br>FY06 | %     | FY06-<br>FY07 | %    | FY07-<br>FY08   | %     | FY05-<br>FY08 | %     |
|------------------|---------------|-------|---------------|------|-----------------|-------|---------------|-------|
| AG               | -622          | -1.8  | 147           | 0.4  | 904             | 2.6   | 429           | 1.2   |
| DAGS             | 1,517,246     | 3.1   | 609,067       | 1.2  | 2,364,499       | 4.6   | 4,490,812     | 9.2   |
| DBEDT            | -137,653      | -27.7 | 251,587       | 70.1 | -64,209         | -10.5 | 49,725        | 10.0  |
| DCCA             | -264,355      | -15.4 | 130,960       | 9.0  | 35,206          | 2.2   | -98,189       | -5.7  |
| DHHL             | 211,107       | 9.2   | 495,124       | 19.9 | 402,444         | 13.5  | 1,108,675     | 48.6  |
| DHS              | 153,260       | 4.0   | 32,780        | 0.8  | -123,880        | -3.1  | 62,160        | 1.6   |
| DLIR             | 90,142        | 28.1  | -16,135       | -3.9 | -21,016         | -5.3  | 52,991        | 16.5  |
| DLNR             | -21,722       | -0.6  | 186,707       | 5.4  | 13,721          | 0.4   | 178,706       | 5.1   |
| DOA              | 95,026        | 3.4   | 388,470       | 13.3 | -464,060        | -14.0 | 19,436        | 0.7   |
| DOD              | 197,425       | 2.9   | 242,591       | 3.5  | -215,321        | -3.0  | 224,695       | 3.4   |
| DOE              | 588,693       | 0.4   | 4,053,660     | 2.8  | 55,622          | 0.0   | 4,697,975     | 3.3   |
| DOH              | -45,685       | -0.2  | -221,067      | -0.9 | -72,018         | -0.3  | -338,770      | -1.3  |
| DOT-Airports     | 1,146,170     | 0.9   | 2,226,538     | 1.7  | 2,631,610       | 2.0   | 6,004,318     | 4.7   |
| DOT-Harbors      | 271,965       | 2.6   | 656,007       | 6.1  | -127,396        | -1.1  | 800,576       | 7.7   |
| DOT-<br>Highways | -624,940      | -2.2  | 12,296        | 0.0  | -207,090        | -0.7  | -819,734      | -2.8  |
| FTZ              | 122,240       | 13.3  | -32,320       | -3.1 | 21,760          | 2.2   | 111,680       | 12.1  |
| HCDA             | -897,742      | -78.1 | 69,866        | 27.7 | -3,341          | -1.0  | -831,217      | -72.3 |
| HHFDC            | 97,072        | 3.2   | 2,313,271     | 73.4 | 402,584         | 7.4   | 2,812,927     | 92.1  |
| HHSC             | -1,573,834    | -7.8  | 251,590       | 1.4  | -658,283        | -3.5  | -1,980,527    | -9.8  |
| HSPLS            | 28,846        | 0.3   | 366,861       | 4.3  | -153,271        | -1.7  | 242,436       | 2.9   |
| HTA-CC           | 1,325,400     | 17.9  | -658,200      | -7.6 | -208,200        | -2.6  | 459,000       | 6.2   |
| NELHA            | -560,126      | -12.5 | 118,305       | 3.0  | 142,565         | 3.5   | -299,256      | -6.7  |
| PSD              | -204,191      | -0.9  | -833,437      | -3.8 | -408,256        | -2.0  | -1,445,884    | -6.6  |
| UH               | 14,080,648    | 7.6   | 5,526,693     | 2.8  | -<br>11,825,622 | -5.7  | 7,781,719     | 4.2   |

Table 3. Differences in Electricity Consumption (kWh) for Reported Years<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> Electricity consumption and cost data for the Hawai'i Department of Defense (DOD), the Hawai'i Public Housing Authority (HPHA) and the Hawai'i Housing Finance and Development Corporation (HHFDC) were obtained from the electric utilities. Due to difficulties interpreting the data for HPHA, HHFDC and the Housing and Community Development Corporation of Hawai'i (HCDCH) which preceded their formation, however, electricity and cost data for public housing agencies are not included in this year's report. Neither DOD nor HPHA submitted a Lead by Example report and are thus not included in the text of this combined state agencies' report.

#### Electricity Costs by State Agencies

State executive branch agencies consumed 683.98 million kWh in fiscal year 2008, a 3.6% increase over 2005. However, this electricity was much more expensive than in previous years due to escalating worldwide oil prices. Electricity purchased from utilities cost \$102.27 million in 2005 but jumped to \$159.08 million in 2008, a 55.6% increase. The totals for the fiscal years from 2005 to 2008 are given in Figure 3.





Individual agencies' energy bills reflected the higher oil costs, which translated to significant increases in utility charges per kilowatt-hour. As discussed above, energy consumption by certain agencies rose, but even the departments which were able to decrease total electricity use experienced increased costs. For example, DBEDT's Film Office, DLIR and the UH system were able to decrease their electricity consumption by 10.5%, 5.3% and 5.7%, respectively, between 2007 and 2008, but their electricity bills all rose 11%-12% during the same period.

Agencies are actively addressing their energy consumption with methods such as retrofitting lights, tinting windows, replacing aging air conditioning systems, and assessing the potential for solar water heating.

Electricity costs for each agency are reported by fiscal year in Figure 4.



## Figure 4. Cost of Purchased Electricity by Agency, Showing Percentage Change from FY05 to FY08

Electricity cost state executive agencies \$24.4 million more in 2006 than in 2005, \$6.56 million more between 2006 and 2007, and an additional \$25.8 million between 2007 and 2008. Electricity expenses are clearly impacting the state government budget as well as the state's economy. Lack of control over the vagaries of the world oil market is a major incentive for reducing the use of petroleum-based energy by both improving efficiency and replacing fossil fuels with renewable resources.

Agencies' electricity costs for fiscal years 2005 through 2008 are shown in Table 4. Table 5 lists the differences in dollars paid for utility electricity from year to year, and the percentage change between years.

| Agency  | FY05          | FY06          | FY07          | FY08          |
|---------|---------------|---------------|---------------|---------------|
| AG      | \$10,741      | \$11,632      | \$12,204      | \$14,626      |
| DAGS    | \$7,410,397   | \$9,165,691   | \$9,184,704   | \$11,804,444  |
| DBEDT   | \$115,698     | \$89,907      | \$124,219     | \$139,262     |
| DCCA    | \$240,100     | \$262,663     | \$268,047     | \$349,372     |
| DHHL    | \$489,457     | \$628,026     | \$811,507     | \$1,031,764   |
| DHS     | \$682,659     | \$848,950     | \$869,092     | \$1,011,391   |
| DLIR    | \$77,662      | \$119,933     | \$116,422     | \$130,371     |
| DLNR    | \$709,075     | \$839,955     | \$890,562     | \$1,057,839   |
| DOA     | \$545,360     | \$647,465     | \$789,674     | \$793,691     |
| DOD     | \$1,163,250   | \$1,419,457   | \$1,495,511   | \$1,740,097   |
| DOE     | \$25,610,926  | \$30,615,253  | \$31,766,931  | \$38,227,400  |
| DOH     | \$3,939,563   | \$4,747,817   | \$4,759,608   | \$5,882,869   |
| DOT-Air | \$17,761,072  | \$22,201,217  | \$22,950,799  | \$28,660,944  |
| DOT-Har | \$1,670,117   | \$2,045,415   | \$2,134,196   | \$2,638,632   |
| DOT-Hwy | \$5,014,205   | \$5,905,311   | \$5,767,999   | \$6,989,872   |
| FTZ     | \$134,290     | \$180,726     | \$174,446     | \$221,373     |
| HCDA    | \$149,278     | \$53,436      | \$61,014      | \$74,315      |
| HHFDC   | \$451,566     | \$570,475     | \$918,309     | \$1,251,788   |
| HHSC    | \$3,982,094   | \$4,415,497   | \$4,801,818   | \$5,866,179   |
| HSPLS   | \$1,534,826   | \$1,808,919   | \$1,891,008   | \$2,246,677   |
| HTA-CC  | \$1,104,124   | \$1,520,889   | \$1,411,445   | \$1,717,207   |
| NELHA   | \$914,711     | \$1,015,139   | \$1,071,918   | \$1,313,291   |
| PSD     | \$3,242,882   | \$3,972,605   | \$3,848,077   | \$4,689,674   |
| UH      | \$25,319,878  | \$33,614,318  | \$37,144,213  | \$41,231,276  |
| Totals  | \$102,273,932 | \$126,700,695 | \$133,263,724 | \$159,084,352 |

 Table 4. Cost of Electricity Purchased by State Agencies<sup>4</sup>

<sup>&</sup>lt;sup>4</sup> Electricity consumption and cost data for the Hawai'i Public Housing Authority (HPHA) and the Hawai'i Housing Finance and Development Corporation (HHFDC) were obtained from the electric utilities. Due to difficulties interpreting the data for HPHA, HHFDC and the Housing and Community Development Corporation of Hawai'i (HCDCH) which preceded their formation, however, electricity and cost data for public housing agencies are not included in this year's report. Neither DOD nor HPHA submitted a Lead by Example report and are thus not included in the text of this combined state agencies' report.

| Agency           | FY05-<br>FY06 | %     | FY06-<br>FY07 | %    | FY07-<br>FY08 | %    | FY05-<br>FY08 | %     |
|------------------|---------------|-------|---------------|------|---------------|------|---------------|-------|
| AG               | 892           | 8.3   | 571           | 4.9  | 2,422         | 19.8 | 3,885         | 36.2  |
| DAGS             | 1,755,294     | 23.7  | 19,013        | 0.2  | 2,619,740     | 28.5 | 4,394,047     | 59.3  |
|                  |               |       |               |      |               |      |               |       |
| DBEDT            | -25,792       | -22.3 | 34,312        | 38.2 | 15,043        | 12.1 | 23,563        | 20.4  |
| DCCA             | 22,563        | 9.4   | 5,384         | 2.0  | 81,325        | 30.3 | 109,272       | 45.5  |
| DHHL             | 138,569       | 28.3  | 183,480       | 29.2 | 220,257       | 27.1 | 542,307       | 110.8 |
| DHS              | 166,291       | 24.4  | 20,142        | 2.4  | 142,299       | 16.4 | 328,732       | 48.2  |
| DLIR             | 42,271        | 54.4  | -3,510        | -2.9 | 13,948        | 12.0 | 52,709        | 67.9  |
| DLNR             | 130,879       | 18.5  | 50,608        | 6.0  | 167,276       | 18.8 | 348,763       | 49.2  |
| DOA              | 102,105       | 18.7  | 142,209       | 22.0 | 4,017         | 0.5  | 248,331       | 45.5  |
| DOD              | 256,207       | 22.0  | 76,054        | 5.4  | 244,586       | 16.4 | 576,847       | 49.6  |
| DOE              | 5,004,327     | 19.5  | 1,151,678     | 3.8  | 6,460,469     | 20.3 | 12,616,474    | 49.3  |
| DOH              | 808,254       | 20.5  | 11,791        | 0.2  | 1,123,262     | 23.6 | 1,943,307     | 49.3  |
| DOT-Airports     | 4,440,145     | 25.0  | 749,582       | 3.4  | 5,710,145     | 24.9 | 10,899,872    | 61.4  |
| DOT-Harbors      | 375,298       | 22.5  | 88,781        | 4.3  | 504,436       | 23.6 | 968,515       | 58.0  |
| DOT-<br>Highways | 891,106       | 17.8  | -137,312      | -2.3 | 1,221,873     | 21.2 | 1,975,666     | 39.4  |
| FTZ              | 46,437        | 34.6  | -6,281        | -3.5 | 46,927        | 26.9 | 87,083        | 64.8  |
| HCDA             | -95,842       | -64.2 | 7,579         | 14.2 | 13,301        | 21.8 | -74,963       | -50.2 |
|                  |               |       |               |      |               |      |               |       |
| HHFDC            | 118,910       | 26.3  | 347,834       | 61.0 | 333,478       | 36.3 | 800,222       | 177.2 |
| HHSC             | 433,404       | 10.9  | 386,321       | 8.7  | 1,064,360     | 22.2 | 1,884,085     | 47.3  |
| HSPLS            | 274,093       | 17.9  | 82,089        | 4.5  | 355,669       | 18.8 | 711,851       | 46.4  |
| HTA-CC           | 416,764       | 37.7  | -109,443      | -7.2 | 305,761       | 21.7 | 613,082       | 55.5  |
| NELHA            | 100,428       | 11.0  | 56,780        | 5.6  | 241,373       | 22.5 | 398,580       | 43.6  |
| PSD              | 729,723       | 22.5  | -124,527      | -3.1 | 841,597       | 21.9 | 1,446,792     | 44.6  |
| UH               | 8,294,440     | 32.8  | 3,529,894     | 10.5 | 4,087,063     | 11.0 | 15,911,398    | 62.8  |

 Table 5. Differences in Cost of Electricity for Reported Years (\$)<sup>6</sup>

<sup>&</sup>lt;sup>6</sup> Electricity consumption and cost data for the Hawai'i Public Housing Authority (HPHA) and the Hawai'i Housing Finance and Development Corporation (HHFDC) were obtained from the electric utilities. Due to difficulties interpreting the data for HPHA, HHFDC and the Housing and Community Development Corporation of Hawai'i (HCDCH) which preceded their formation, however, electricity and cost data for public housing agencies are not included in this year's report. <sup>7</sup>DAGS' data include consumption by the Aloha Stadium plus that of agencies occupying buildings operated by DAGS, such as Dept. of Budget & Finance, Dept. of Human Resources Development, Dept. of Taxation, and most locations of Dept. of Business, Economic Development & Tourism.

#### Efficiency in Buildings

In Hawai'i, applying energy efficiency to the design, construction and operation of buildings is becoming a standard practice. The State of Hawai'i is active in several "green building" initiatives and now requires LEED Silver certification, to the extent possible, for new construction and major renovation. In addition to energy savings, LEED Silver standards dictate improved indoor environmental quality, which has been linked to reduced absenteeism, 2%-16% increased productivity, 20% better test performance in schools, and  $2\frac{1}{2}$  day earlier discharge from hospitals.

LEED is a program of the U.S. Green Building Council (USGBC). DBEDT joined the Council in 2006; its membership on behalf of the State of Hawai'i allows all state employees access to USGBC publications and training sessions at a reduced cost, as well as exclusive on-line reports, participation in local USGBC chapter events, and reduced LEED project registration and certification fees. Although certification provides independent, third-party verification of a building's performance to LEED standards, some agencies are designing facilities to meet LEED criteria but do not plan to formally certify them because of cost considerations.

Five state agencies now have LEED Accredited Professionals on staff: DBEDT, DOE, DOT, DAGS and UH. Other employees are in training for this goal.

DBEDT continues to benchmark state buildings, a process which involves calculating the building's annual energy consumption per square foot. This results in an "energy usage index" (EUI), allowing buildings to be quickly compared.

Benchmarking is one way of evaluating whether buildings are potential candidates for Energy Star® status. Energy Star® is a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy to protect the environment and reduce costs through energy efficient products and practices. Energy Star® certified buildings rank in the top quartile of an EPA performance rating system calculated from actual energy use. Energy Star® certified buildings also must qualify for thermal comfort while meeting lighting, ventilation, and indoor air quality requirements.

Hawai'i also has been an active member of EPA's Energy Star® 10% Challenge program since 2005. The program identifies buildings where financially attractive energy efficiency improvements could reduce energy use by 10%, and then implements those changes through low-cost building tune-ups, lighting upgrades, and replacement of old equipment. Another benefit is the reduction of greenhouse gas emissions.

Six state facilities have achieved Energy Star® status; some of these have received annual certification repeatedly.

- Kakuhihewa Building (Kapolei State Building)
- Leiopapa A Kamehameha Building (State Office Tower)

- Abner Paki Hale Courthouse
- Hilo State Office Building
- Keoni Ana Building
- Waipahu Civic Center

To ensure that buildings function as efficiently as possible, commissioning and retrocommissioning processes are being employed. Commissioning is applied to new buildings, while retrocommissioning optimizes an existing building's operation and maintenance. DAGS, for example, is retrocommissioning 11 projects on four islands.

The following state buildings have either achieved LEED standards or are in process toward that goal. A number of these projects were already underway before the LBE initiative began.

**LEED** Platinum

- NELHA Hawai'i Gateway Energy Center (completed)
- NELHA Gateway Center office structure (planned)

## LEED Gold

• UH-Hilo Student Life Complex (completed; certification pending)

## LEED Silver

- DAGS Keaukaha Military Reservation Joint Military Center (design)
- DAGS Maui Public Safety Complex (design)
- DOE 'Ewa Makai Middle School campus (pending construction)
- DOE Kapa'a Elementary School library (design)
- DOE Kīhei High School campus (planned)
- DOE West Maui Elementary School Elementary School (predevelopment)
- DOE Wailuku Elementary School II (pre-design)
- DOH Hawai'i State Hospital new forensic facility (funds to be requested)
- HSPLS North Kohala Public Library (construction bid awarded)
- HSPLS Mānoa Public Library (construction bid awarded)
- PSD Kaua'i Regional Complex (planned)
- PSD Maui Community Correctional Center relocation (design)
- PSD O'ahu Regional Complex (planned)
- PSD new transitional housing (planned)
- UH Information Technology Center (design)
- UH-Hilo Hawaiian Language Building (design)
- UH-Hilo Sciences and Technology Center (under construction)
- UH-Hilo Student Services Building addition and renovation (design)
- UH-Mānoa Campus Center renovation and addition (pre-design)
- UH-Mānoa College of Education (planned, pending funds)
- UH-Mānoa Edmonson Hall renovation (funded for design)

- UH-Mānoa Frear Hall Residence Building (completed; certification pending)
- UH-Mānoa Gartley Hall renovation (design)
- UH-Mānoa Kennedy Performance Arts Facilities (design; funds pending)
- UH-Mānoa Pacific Regional Biosafety Laboratory (funded for design and construction)
- UH- Mānoa Performing Arts Facility (design)
- UH-Mānoa School of Law addition and renovation (funded for planning)
- UH-Mānoa new classroom building (planning)
- UH-West O'ahu new Kapolei campus development (design)
- Honolulu Community College Advanced Technology Training Center (funded for design)
- Kapi'olani Community College Culinary Institute of the Pacific (design)
- Leeward Community College Education and Innovation Instructional Facility (project development phase)
- Maui Community College science facility (design)
- Windward Community College Library and Learning Center (design)

LEED Certified

- DOE Waipahu Intermediate School Cafeteria (completed)
- UH-Mānoa School of Medicine (completed)
- UH-Hilo 'Imiloa Astronomy Center of Hawai'i (completed)

LEED Commercial Interiors

• DOT-Airports Division renovation of Honolulu International Airport Lounge (awarded for construction)

In addition, sustainable design criteria similar to those of LEED are being incorporated by DAGS during the design phase of the Kapolei Judiciary Complex, within the constraints of project funding. DBEDT, working with DAGS, is developing guidelines for design and construction which can be applied toward meeting LEED requirements. DOE is also designing some school facilities to meet LEED Silver standards but will not pursue formal certification due to cost concerns. Hawai'i High Performance School Guidelines, which provide guidance for design consultants, will still be used when applicable to achieve LEED requirements in school buildings.

DAGS is also the state's lead agency for energy performance contracting, a proven method of implementing energy efficiency capital projects without requiring upfront funds.

#### Utility Rebates Save Money at State Facilities

Since 1996, many public agencies have taken advantage of utility-sponsored demand-side-management (DSM) programs. Utilities have provided rebates for both retrofit and new construction in the areas of lighting, motors, and heating/ventilation/air conditioning (HVAC), and also have supported customized approaches.

More than \$4.2 million in rebates have been provided by the Hawaiian Electric Company, Inc. (HECO) and its subsidiaries to State of Hawai'i executive agencies from 1996 through June 2008. In 2008, the cumulative energy savings from retrofits and new construction was 55,346 MWh, enough to power 6,700 homes in Hawaii for that year. The utility bill and energy savings are expected to grow to \$149 million and 830,204 MWh, respectively, over the life of the energy-efficient equipment. This is the equivalent of 100,557 households' annual electricity use.

Kaua'i Island Utility Cooperative (KIUC) also provides rebates. In early 2008, the Hawai'i National Guard received three rebates for efficient lighting retrofits installed in late 2007 totaling \$10,600. In addition, Wilcox Elementary School received a \$4,031 rebate for an air conditioning rebate in November 2008.

The Department of Education and the University of Hawai'i system were the largest beneficiaries of HECO rebates, receiving over \$1 million each as shown in Figure 5. The "Housing" rebates were provided to the Housing and Community Development Corporation of Hawaii which was reorganized in 2005 into two agencies, HPHA and HHFC. The state agencies which received DSM rebates from the three HECO utilities saved the equivalent of \$251,500 to \$1.6 million per year on their electricity bills from 1996 to June 30, 2008. Cumulatively, the agencies have saved \$9.9 million during the same period. Cost savings for state executive agencies as of June 30, 2008, are depicted in Figure 6. Equivalent savings are calculated using \$0.18/kWh as the average cost for commercial electricity for the sake of consistency.

Cumulatively, since 1996, 409,095 MWh have been saved at state facilities served by HECO utilities. Total demand savings for the period are 11.8 MW. Cumulative electricity savings due to utility efficiency rebate programs since 1996 are depicted for the executive agencies which participated in the programs in Figure 7.



# Figure 5. Selected State Facilities' DSM Rebates from HECO since 1996, by Agency



Figure 6. Cumulative State Executive Facilities' DSM Rebate Savings (\$) from HECO since 1996



Figure 7. Cumulative State Executive Facilities' Energy Savings from HECO Rebate Programs (kWh), since 1996

Most of the savings are from lighting retrofits: 35 million kWh per year of consumption, representing 63% of the total. Custom retrofits are a distant second, with 9.8 million kWh saved annually. Space cooling saves nearly as much: 9.6 million kWh per year. Other rebates were provided for motors and water heating. The annual energy savings due to utility DSM rebate programs for each technology are depicted in Figure 8.

HECO's data show that a typical office building's electricity is primarily used for space conditioning: providing cooling and operating heating, ventilation and air-conditioning (HVAC) fans required 43% of a building's electricity. Lighting was a strong second at 27%. "Plug loads" such as computers, copiers and other equipment were responsible for 17% of the electricity consumed, and water heating was only 0.2%. Miscellaneous uses (e.g. elevators, water coolers) accounted for the remaining 12.8%. These data, shown in Figure 9, indicate some of the most promising targets for energy conservation.

When State of Hawai'i facilities on O'ahu are examined by type, it is evident that campuses consisting of classrooms and offices consume half of the electricity. Office buildings and the Honolulu International Airport respectively consume 17.7% and 17.6% of the total. The public hospital system is also a significant consumer, accounting for 6.3%. These data, provided by HECO, are shown in Figure 10.





Figure 9. Typical Office Building Energy Use Breakdown





## Figure 10. State of Hawai'i Facilities on O'ahu, Electricity Consumption by Occupancy Type

## Highlights of Current State Energy Activities

Since the State of Hawai'i established its energy program in 1974, state agencies have undertaken myriad activities focusing on energy efficiency, conservation, and renewable energy. DBEDT's director, the state's Energy Resources Coordinator, is responsible for coordinating energy activities statewide.

These decades of programmatic action have positioned the Administration to rapidly implement the LBE initiative. The state's energy staff and many agencies' efforts have already built a solid foundation, completed some benchmarking and assessments, provided numerous opportunities for training, and executed a number of projects. Some of the recent achievements are described below.

## Efficiency

DOE has developed an internal system that enables the comprehensive management of all utilities—electricity, water, sewage disposal and gas—for all schools through a central office. Payment for all utilities has been consolidated into one office, enabling the department to monitor utility use by the schools. Electrical submeters will be installed for all new facilities. Energy conservation measures for air conditioning and lighting have been implemented, and all appliances will be replaced with Energy Star®-rated appliances by June 15, 2009.

DOE has begun a number of projects to examine the feasibility of various heat abatement strategies other than air conditioning. These include pilot projects at 'Ewa Beach Elementary and at Kahuku High School's portable classrooms. As a result of a study, the department will include motion detectors for controlling classroom lighting in future energy service company work in the schools.

Several community colleges are also employing submetering for buildings, air conditioning and irrigation units to reduce operating costs. Several new buildings are using waterless urinals to reduce water consumption.

PSD received funding for a department-wide energy conservation program in 2007 and has selected a consultant to assess efficiency options. The Hawai'i Air National Guard replaced an inefficient air compressor system, saving \$37,000 in electricity and \$11,000 in water costs annually.

The Honolulu International Airport Modernization Program will incorporate sustainability goals and LEED guidelines for their projects. DOT-Airports' taxiway lighting system and guidance signs replacement projects have reduced annual electricity consumption by 600,000 kWh.

A large project to improve energy systems at 'Iolani Palace is in the design phase; construction is scheduled to begin in October 2009. The entire air conditioning system needs to be replaced to improve efficiency while preserving the priceless cultural and historic artifacts within the monument. The new system will be commissioned to ensure optimum performance.

During Fiscal Year 2008, DAGS initiated 11 pilot retrocommissioning projects on O'ahu, Hawai'i, Maui and Kaua'i to save energy. Some projects have completed the investigation phases and implemented minor repairs. Other recommended work will need to be included in future CIP budget requests.

Working with HSPLS, twelve libraries received energy efficiency retrofits, either from in-house DAGS crews or from contractors. DAGS currently has 21 library lighting retrofit projects under design which are expected to be bid and constructed in FY 2009. In 2008, HSPLS replaced two ageing air conditioning systems, improving efficiency.

DBEDT convened the State Facilities Energy Management Advisory Committee (EMAC) in 2007, which made recommendations for increasing the use of energy savings contracts, improving building design, reduction of energy consumption, expanding the use of renewable energy, and procuring energy efficient products. The report was submitted to the state Legislature in January 2008.

DBEDT also chaired the International Energy Conservation Code (IECC) committee of the State Building Code Council, preparing recommendations to modify the IECC to suit Hawai'i's unique conditions. DBEDT has applied to the U.S. Department of Energy to become an "early adopter" of the next iteration of the IECC.

A DBEDT technical consultant provided information on energy performance contracting mechanisms to the Hawai'i Public Housing Authority as that agency developed a Request for Proposals and evaluated responses. HPHA's project will include 5,363 federally-funded residential units to be retrofit with energy and water efficiency improvements. Major performance contracts statewide have already saved millions of dollars. DAGS is leading the state's efforts in performance contracting.

DOT-Highways continues to install energy-efficient lamps in new or modified traffic signals. FTZ is replacing incandescent bulbs with compact fluorescents and was able to eliminate five 400W metal halide fixtures from its new perimeter lighting system as the result of a photometric survey.

The University of Hawai'i has installed heat recovery systems for hot water at its Frear Resident Hall on the Mānoa campus and the UH-Hilo Student Life Center uses a heat pump for water heating. UH established two energy manager positions which will review renewable energy and efficiency technologies for possible application to existing Campus Renewal CIP projects. A campus-wide Energy Management Committee at UHM is responsible for implementing energy reduction projects. Among the initiatives is a "search and destroy" program to replace incandescent bulbs on campus.

The fossil fuel used to transport personnel, equipment, and materials to Kaho'olawe has been significantly reduced by shifting from helicopters to a 40-foot ocean-borne landing craft. Installation of an efficient diesel generator at the base camp cut fuel use in half. The island's reverse-osmosis system produces 1,500 gallons per day of fresh water, more than adequate for demand.

Solar water heaters are being installed on the Leeward Homeless Shelters Villages of Mā'ili transitional housing which will produce hot water for 80 units and laundry facilities. Two of the four residential water heaters on Kaho'olawe have been converted to solar by DLNR's Kaho'olawe Island Reserve Commission, with the remainder scheduled for conversion next year. NELHA employs solar water heating, and several of its buildings are also air conditioned using deep, cold seawater.

### Renewables

Two laws passed in the 2008 legislative session will help expedite the permitting of renewable energy projects in Hawai'i. Act 207 gives the Energy Resources Coordinator responsibility for creating a streamlined permitting process that includes state and county permits required for the siting, development, construction, and operation of new renewable energy facilities of at least 200 megawatts capacity. Act 208 establishes a new renewable energy facilitator position in DBEDT who will facilitate existing permits, propose changes to the permit process and coordinate energy projects.

Photovoltaics (PV) are likely to be the first renewable energy technology widely adopted by state facilities. DAGS is negotiating with a power provider for photovoltaics to be installed on their Central Services buildings; electricity will be sold to DAGS at a price lower than the utility rate. HHFDC is evaluating photovoltaics for its Pohulani Elderly Project building. NELHA hopes to issue RFPs for both photovoltaics and ocean thermal energy conversion, and has tenants installing concentrating solar facilities.

After issuing a Request for Proposals, DOT-Airports Division awarded a competitive contract in March 2008 to develop photovoltaic systems at 10 transportation facilities, including the Honolulu, Kona, Kalaeloa, Kahului, Līhu'e, Moloka'i and Lāna'i Airports as well as the Foreign Trade Zone in Honolulu. The equipment will be installed over the next two years.

DOE has developed a Request for Proposals for the installation of photovoltaics on public schools on four islands. A third-party vendor will install and maintain the 30-50 kW systems, selling power to DOE at a discounted rate. The community colleges are discussing the installation of photovoltaics with third party providers. Maui Community College campus has received a donated wind turbine and is researching an appropriate site for installation.

DOT-Airports is planning to use cold deep seawater to cool enclosed areas at the Kona International Airport, and expects to install a new parking deck covered with photovoltaic modules.

#### **Transportation**

Not all state agencies have vehicle fleets. Those that do must comply with federal and state regulations relating to the purchase of efficient vehicles, and to purchase the most fuel-efficient vehicles that meet the needs of their programs.

State vehicles are already utilizing E-10 Unleaded gasoline which contains 10% ethanol; state law requires its sale. Many state vehicles are also flexible-fuel capable, and could use higher percentages of ethanol if they became available. The UH has a small fleet of alternatively-fueled and hybrid vehicles.

The state is developing a pricing preference for biodiesel, and several agencies are prepared to use it. Currently, supplies of locally-produced biodiesel are very limited.

## Purchasing Practices

Most departments already utilize life-cycle cost analyses, purchase efficient equipment such as those with the Energy Star® label, and take advantage of utility rebates. DAGS already requires the projects which it manages to use highly efficient mechanical equipment. Utility rebates have typically been used to help offset the cost of purchasing and installing energy-efficient equipment.

The State Procurement Office (SPO) continues to provide price and vendor listings which include Energy Star®, recycled, or environmentally preferred products. For products and supplies not included on the SPO price lists, purchasing agencies are

still required to preferentially order recycled products, oil products with greater recycled content, and biofuels.

DBEDT conducted a Green Cleaning Products pilot program for McKinley High School, Kapālama Elementary School, and the University of Hawai'i with the goal of expanding use throughout state facilities. Green cleaning products are concentrated, requiring less energy to transport as well as less water, are less toxic and thus may require less rinsing. DAGS is integrating cleaning products with the Green Seal or equal certification into its custodial program.

Information on recycled and environmentally preferable products (EPP) has been prepared by DBEDT and is available to state agencies. This includes lists of EPP available in Hawai'i, a case study of successful EPP efforts, an evaluation of procurement practices, and recommendations for specifications and bid requests to address EPP concerns.

## Plans for Future LBE Activities

## Continued Efficiency Efforts

Continued improvements in efficiency and the use of renewable energy in state facilities are expected. Building on the solid foundation of assessments, training, benchmarking, energy performance contracts and other activities undertaken in the past several decades, the administration will maintain its focus on modifying agency operations to improve efficiency. Gathering and assessing data, training staff, developing additional reference materials, enhancing interagency communications, identifying needs for additional skills and tools, and setting efficiency targets are all on the LBE agenda.

## Need for Adequate Implementation Resources

State agencies are committed to the LBE effort, but future results depend on securing adequate implementation resources. Funds for capital improvements, maintenance, and retrofits must be appropriated for energy efficiency and renewable energy goals to be reached. High-priority projects include lighting, LEED commissioning, improvements such as window tints and energy management controls, and renewable energy installations.

## Agency Goals and Plans

As part of the LBE initiative, state agencies have clarified and prioritized their plans for future energy improvements. These plans include new construction as well as retrofits and repairs. LBE Working Groups will be addressing the following tasks:

1) Data Collection:

- Develop a standardized data collection system to establish and refine baselines for various target areas: buildings, transportation, environmental practices and procurement.
- Develop standardized documents/formats for various data requirements.
- Train personnel to use the data tools; collect data for the various target areas.
- 2) Training and Education Activities:
  - Conduct training/education for the various Working Group members (e.g., speakers, selected discussion topics, inter-Working Group meetings to promote information/idea exchanges.)
  - Develop an education/promotional campaign for state personnel to implement and practice increased efficiency.
  - Continue technical training and education efforts to support LBE.
- 3) Technical Assistance:
  - Development of LEED projects and identifying pilot projects.
  - Development of commissioning and retrocommissioning projects.
  - Building assessments, including walk-through audits.
  - Identify and certify Energy Star® state buildings.
- 4) Evaluation:
  - Continue assessment and discussion process to identify future tasks such as development of evaluation criteria, data requirements, and training needs.
  - Develop evaluation tools, quantitative and qualitative, such as conducting post-occupancy evaluations (objective and subjective) of LEED Silver Buildings or buildings with selected technology installations for energy efficiency improvements.
- 5) Policy Review and Recommendations:
  - Continue discussion on energy-efficiency-only budget requests to improve the request process and information provided.
  - Continue examination of potential policy recommendations from the Leadership Working Group, Buildings Working Group, Transportation Working Group, and the Environmental Practices and Procurement Working Group.

## Individual Agency Responses

A compilation of the responses from most State of Hawai'i executive agencies may be found in the following section. Agencies were asked to report on their specific activities relating to Act 96 and Act 160, SLH 2006.

DBEDT issued invitations to participate in this compiled report to all state executive branch departments, including attached agencies. The Department of Defense and the Hawai'i Public Housing Authority did not respond, nor did they provide statutorily required data. The 26 departments and offices which did respond include:

AG: Department of the Attorney General B&F: Department of Budget and Finance DAGS: Department of Accounting and General Services DBEDT: Department of Business, Economic Development & Tourism DCCA: Department of Commerce and Consumer Affairs DHHL: Department of Hawaiian Home Lands DHRD: Department of Human Resource Development DHS: Department of Human Services DLIR: Department of Labor and Industrial Relations DLNR: Department of Land and Natural Resources DOA: Department of Agriculture DOE: Department of Education DOH: Department of Health DOT-Airports: Department of Transportation, Airports Division DOT-Harbors: Department of Transportation, Harbors Division DOT-Highways: Department of Transportation, Highways Division DOTAX: Department of Taxation FTZ: Foreign Trade Zone HCDA: Hawai'i Community Development Agency HHFDC: Hawai'i Housing Finance and Development Corporation HHSC: Hawai'i Health Systems Corporation HSPLS: Hawai'i State Public Library System HTA-CC: Hawai'i Tourism Authority, Convention Center NELHA: Natural Energy Laboratory of Hawai'i Authority PSD: Department of Public Safety UH: University of Hawai'i system

Selected details from specific responses, such as vehicle fleet data, are attached as appendices.

## Consolidated LBE Reports from State of Hawai'i Executive Agencies Fiscal Year 2008 Relating to the Statutory Requirements of Act 96 and Act 160 of 2006

## Act 96 SLH 2006: Buildings and Facilities

(1) Design and construct buildings meeting the Leadership in Energy and Environmental Design silver or two green globes rating system or another comparable state-approved, nationally recognized, and consensus-based guideline, standard, or system, except when the guideline, standard, or system interferes or conflicts with the use of the building or facility as an emergency shelter;

AG: Not applicable; the Department of the Attorney General (AG) does not design or construct buildings.B&F: Not applicable. The department does not oversee the design, construction or maintenance of building facilities.

DAGS: The Division of Public Works (PWD) already implemented and constructed a pilot project, Waipahu Intermediate School Cafeteria, which received a LEED Certified rating. Construction of this project was completed under the DOE due to Act 51; however staff from the Division of Public Works were actively involved in project.

PWD has already gained experience and learned from the Waipahu Intermediate School Cafeteria project, including just becoming more familiar with LEED or sustainable design. Now the division has at least one source to identify potential costs impacts from this pilot project. The project only sought a LEED Certified rating due to budget constraints and to some degree the type of facility, which may not allow or provide for enough points in the LEED rating system without being unreasonable in the design and associated costs.

PWD currently is working on four designated projects to achieve a LEED Silver rating. The four projects are:

- <u>Mānoa Public Library</u> <u>Expansion and Site Improvements, DAGS Job No. 12-36-6364</u> This project has been bid and a construction contract in the amount of \$8,159,000 has been awarded to Allied Pacific Builders, Inc. The project is currently pending building permit approvals and PWD anticipates starting construction in January 2009 and completing construction in mid 2010.
- <u>New Kohala Public Library, DAGS Job No. 11-36-6367</u> This project has been bid and a construction contract in the amount of \$6,895,900 has been awarded to Isemoto Contracting Co., Ltd. The project is currently pending building permit and zoning approvals and PWD anticipates starting construction in September 2008 and completing construction in late 2009.
- <u>Keaukaha Military Reservation Joint Military Center, Phase 1, DAGS Job No. 21-14-7292</u> This is a design-build project which received design-build proposals on April 10, 2008. An award in the amount of \$50,768 to Nan, Inc. was made on June 10, 2008 and the notice to proceed was issued on August 11, 2008. The project is currently under design by the designbuilder Nan, Inc. It is anticipated that the construction part of the design-build contract will start in mid 2009 with a completion date in early 2011.
- <u>Maui Regional Public Safety Complex, DAGS Job No. 15-27-5562</u> This project is currently starting design. Initially the project was planned to be accomplished in two phases, with Phase 1 estimated at approximately \$50 million and Phase 2 estimated at over \$150 million. The project now will be designed and constructed in one phase and the estimated cost is over \$200 million. The goal of this project will be to achieve a LEED Silver rating.

The projects above are part of developing our strategy. For the immediate strategy, the Division of Public Works will implement projects in accordance with Act 96, SLH 2006 "to the extent possible." PWD's general strategy in defining and applying "to the extent possible" is to take the following steps:

- 1<sup>st</sup> level: Look for and implement sustainable design practices and elements that PWD does already, thus no impact on operation/function and cost.
- 2<sup>nd</sup> level: Look for and implement sustainable design practices and elements that PWD may not have normally done, but can do without negative impact to cost and negative impact to operation/function of the facility.
- 3<sup>rd</sup> level: Look for and <u>possibly</u> implement sustainable design practices and elements that PWD may not currently do that are not very costly and improve operation/function of the facility. Associated costs, benefits, budget and maybe even schedule will start to become factors in deciding whether to implement.
- 4<sup>th</sup> level: Look for and <u>possibly</u> implement requirements that PWD may not currently do and will impact cost and will improve operation/function of the facility. Associated costs, benefits, budget and schedule will be factors in deciding whether to implement.
- 5<sup>th</sup> level: And so forth...

Part of the strategy also includes <u>knowing what we do not want to do</u>: PWD shouldn't implement sustainable design practices and elements that do not offer any real value. The division definitely does not want to implement sustainable design requirements to get LEED points just to achieve a rating that does not provide a real value even if the project budget would allow it. As PWD gains experience and knowledge from the projects that will occur over the year, the division intends to develop a LEED or generically state, Sustainable Design and Commissioning application guideline and programmatic support for PWD and possibly other state agencies.

DBEDT: On behalf of the State of Hawai'i, DBEDT renewed its membership with the U.S. Green Building Council (USGBC) in 2008. USGBC administers the Leadership in Energy and Environmental Design (LEED) rating system. DBEDT continues to cosponsor many LEED training sessions and continues to serve on the USGBC Hawai'i Provisional Chapter's Education Committee. There are now more State of Hawai'i LEED projects completed, under construction and consideration. This fiscal year, DAGS personnel planned to join DOT, DOE and DBEDT in having LEED-accredited professionals on staff. DBEDT has helped coordinate LEED workshops to prepare additional state personnel and others to take the USGBC examination and become LEED accredited professionals.

Through State of Hawai'i General Funds, DBEDT has a contract with USGBC to provide training assistance to State of Hawai'i agencies. Through this agreement, training and reference documents on implementing LEED projects will be provided on October 20-24, 2008, and in early 2009 by the USGBC to State of Hawai'i program and project managers.

Green Building Services, Inc. (GBS) has been providing State of Hawai'i agencies with green building-related technical assistance. GBS presented at a Consulting Engineers Council of Hawai'i Conference in February 2008 and conducted a LEED Commercial Interiors Assessment for a project with the Department of Transportation's Airports Division. GBS has met with and provided technical assistance to the State of Hawai'i's DOE providing portable classroom Request for Proposals (RFP) language, Construction Waste Management Specifications and a LEED for Existing Buildings assessment for DAGS, and reviewing Conservation Use Permit language with DLNR. GBS will also assist State of Hawai'i agencies such as HCDA, DAGS and others with an Implementation Guide for Project Managers on LEED Projects.

DBEDT convened the State Facilities Energy Management Advisory Committee (EMAC) in 2007, which made recommendations for increasing the use of energy savings contracts, improving building design, reduction of energy consumption, expanding the use of renewable energy, and procuring energy efficient products. The report was submitted to the state Legislature in January 2008.

DBEDT staff attended all meetings of the State Building Code Council, created by legislation to update and unify building codes statewide. Staff also:

- Chaired the International Energy Conservation Code (IECC) committee.
- Held ten meetings for the purpose of modifying the IECC to suit Hawai'i's unique conditions.
- Testified before the Honolulu City Council on Bill 87 which would require all new commercial construction on O'ahu to be LEED compliant.
- Applied to the U.S. Department of Energy for a grant to become an "early adopter" of the next iteration of the IECC.

DBEDT convened the Lead By Example initiative's Leadership Working Group to brief over 20 agency and departmental managers about energy and resource efficiency topics, including green building practices.

DCCA: Not applicable; DCCA did not construct or renovate any buildings.

- DHHL: DHHL will encourage its Land Development Division to plan design and all future housing projects to meet LEED Silver or two green globes rating. DHHL will also encourage its Land Management Division to require all new general lessees and licensees to plan and design their facilities to meet the same requirement. All potential lessees are instructed to consider energy efficiency. DHHL will continue to work with DBEDT in a statewide effort on energy efficiency. DHHL is in the process of developing its own energy policy to enable native Hawaiians to lead in Hawai'i's effort to achieve energy self sufficiency and sustainability.
- DHRD: Not applicable. The department does not design or construct buildings.
- DHS: The Department of Human Services will continue to coordinate all building and facility projects with DAGS to ensure that all construction, and repairs and alterations projects are in compliance with the applicable standards and guidelines.
- DLIR: The Department of Labor and Industrial Relations (DLIR) does not own or manage any buildings. The majority of DLIR personnel are housed in building facilities constructed and managed by DAGS. The remaining DLIR personnel are out-stationed in privately-owned buildings. The DAGS Leasing Branch secures all rental lease agreements for DLIR occupants housed in privately-owned buildings. In addition, DLIR does not have any plans to design or construct new buildings or facilities at this time. DLIR will continue to learn about energy efficiency and environmental designs. As DLIR staff gain more knowledge in energy efficiency and environmental designs, appropriate steps will be taken to incorporate these standards into DLIR standards. DLIR will work with the appropriate DAGS agencies to incorporate energy efficiency measures to reduce energy consumption.
- DLNR: DLNR continues to work with DBEDT in a statewide collaboration on energy efficiency, as a member of DBEDT's Lead by Example Leadership Group. DLNR will continue to work with the Leadership Group on ideas to implement energy savings across the state. As department staff learns more about such initiatives, they will incorporate such guidelines into DLNR standards.

DLNR's facility portfolio is limited. Most of buildings owned by DLNR are composed of base yards, harbor facilities and park restrooms. DLNR incorporates energy saving concepts into all of its owned facilities as appropriate. Energy saving concepts include the use of solar water heaters, natural ventilation and lighting, use of energy efficient lights, and water savings using waterless urinals or low flush toilets. Additionally, DLNR has begun to incorporate energy savings practices into design projects such as recycling existing asphalt and concrete pavement into backfill material.

DLNR evaluates the feasibility of implementing energy conservation measures when capital improvement projects are designed. As DLNR staff learns more about energy efficiency and environmental design, they will incorporate these concepts into building and facility design and renovations.

- DOA: This requirement is not applicable since the department utilizes the engineering services of the Public Works Division of DAGS and follows their guidelines and standards for designing and constructing buildings.
- DOE: The Department of Education (DOE) now designs all new buildings or facilities to meet the requirements of LEED Silver. In addition, all consultants are now required to have a LEED Accredited Professional on the project team. 'Ewa Makai Middle School, scheduled to begin construction in early 2009, will be the first DOE new school where the entire campus will be designed to meet LEED Silver certification. DOE is also designing Wailuku Elementary II and Kihei High School to comply with LEED Silver standards. Single facility projects which are being designed to LEED standards include a new gymnasium for Pāhoa High, a new classroom building at Na'alehu, a new cafeteria for Lahainaluna High, a new classroom building for Campbell High and a new administration building for Kalāheo Elementary. Although not specifically covered by Act 96, DOE is moving toward applying the requirements for LEED for existing buildings for all major renovation and upgrade projects.
- DOH: The Department of Accounting and General Services handles all capital improvement projects for the Department of Health. DOH coordinates its own small projects such as office renovations and minor improvements costing less than \$50,000. The department does not have any plans for the
construction of new buildings, however, it will design and construct for LEED Certification should funding become available.

- DOT-Airports: The Airports Division has been designing and constructing buildings and facilities with energy efficient technology for over 12 years. The Honolulu International Airport Modernization Program will incorporate sustainability goals and LEED guidelines for their projects. The new maintenance projects will implement commissioning and apply energy saving designs throughout the system. Airfield taxiway lighting system and guidance signs replacement projects have annual kWh reductions of 600,000. DOT-Air received HECO rebates of \$33,000. The division is committed to design and construct buildings and facilities with energy efficiency technology and LEED standard for the Statewide Airport System.
- DOT-Harbors: The division will: train staff on LEED methodology; require design consultants and construction contractors to be knowledgeable of and able to comply with Act 96 SLH 2006; ensure that all designs for new construction meet LEED Silver certification; and develop program milestones to encourage 100% implementation over a period of time.
- DOT-Highways: The division will require design consultants to comply with Act 96, SLH 2006 and ensure that all new designs meet LEED Silver certification.
- DOTAX: Department of Taxation (DOTAX) buildings are constructed and managed by DAGS.
- FTZ: Not applicable; FTZ does not design or construct buildings.
- HCDA: HCDA does not have plans to construct any buildings.
- HHFDC: The HHFDC Asset Management staff attended a webinar concerning actions that could be taken towards gaining LEED Certification on older buildings, conducted by IREM. The plan is attend as many training webinars and seminars as possible to bring our asset properties to the highest level of efficiency and compliance.
- HHSC: For all new construction, Hawai'i Health Systems Corporation will assess the cost of LEED building criteria. If the cost for LEED design exceeds the budget of the project, then the project will incorporate as many energy conservation measures as possible. For long range planning, HHSC will try to include LEED design costs whenever possible.
- HSPLS: The Hawai'i State Public Library System (HSPLS) has been working directly with DAGS on the new North Kohala and Mānoa Public Libraries. These new projects are trying for a LEED Silver rating. The construction contract for the new North Kohala Public Library went out to bid and was awarded to Isemoto Contracting Co., Ltd. for \$6,895,900. Construction is set to start in September 2008 and completed in late 2009. The construction contract for the new Mānoa Public Library went out to bid and was awarded to Allied Pacific Builders, Inc. This project is anticipated to start in November 2008 and be completed in mid 2010.
- HTA-CC: HTA has no plans to design or construct any buildings at this time.
- NELHA: NELHA is home to the Gateway Center, only one of eight LEED Platinum-rated buildings. This building has been the recipient of numerous international and national awards for its "greenness." Study groups from around the world are visiting it to gain knowledge and understanding of how they can implement green technologies as exemplified by this building into their designs. As yet, no Hawaiian groups come to see or visit for the same purpose except for a few very small ones led by the original architects. NELHA has not built any buildings since Gateway. NELHA is in continuing discussions with private investors to build a LEED Platinum office structure at the Gateway.
- PSD: In collaboration with DAGS-Division of Public Works, PSD is directing the consulting architects and engineers selected for the Maui CCC Relocation to Pu'unene project (DAGS Job No. 15-27-5562) to prepare construction bidding documents based upon LEED Silver or better. Consultants selected have advised PSD and DAGS that members of their staff who are LEED accredited will be assigned in various capacities to this project. Additionally, for projects to develop PSD regional complexes on O'ahu and Kaua'i as well as new transitional housing, PSD is directing planning consultants to set the basis of design at LEED Silver or better.
- UH: Systemwide, the University of Hawai'i will continue to apply the LEED rating system in all Capital Improvement Program new and major renovation projects. Sustainability guidelines are being included in the development for all campus long range development plans and project development reports. In general, the goal is for LEED Silver rating certification and, if the goal cannot be attained due to budget constraints, other sustainable design principles will be incorporated into the new or major renovation projects. The status of current projects is:

- UH Mānoa School of Medicine has been completed; LEED Certification is pending U.S. Green Building Council (USGBC) approval.
- UH Mānoa Frear Resident Housing has been completed; LEED Silver is pending USGBC approval.
- UH Mānoa Kennedy Performance Arts Facilities currently under design with goal of LEED Silver.
- UH Mānoa Campus Center Renovation and Addition currently under planning with goal of LEED Silver.
- UH Mānoa Gartley Hall Renovation currently under design with goal of LEED Silver.
- UH Mānoa New Classroom Building currently under planning with goal of LEED Silver.
- UH Mānoa Pacific Regional Biosafety Laboratory funded for design and construction with a goal of LEED Silver.
- UH Mānoa Edmondson Hall Renovation funded for design with goal of LEED Silver.
- UH West O'ahu New campus development in Kapolei currently under design and registered as a LEED project with the USGBC with goal of LEED Silver.
- UH Hilo Student Life Center has been completed; LEED Gold pending USGBC approval.
- UH Hilo Hawaiian Language Building currently under design with goal of LEED Silver.
- UH Hilo Sciences and Technology building designed and currently under construction with goal of LEED Silver.
- UH Hilo Student Services Building Addition and Renovation currently under design with goal of LEED Silver.
- Maui CC Science Facility currently under design with goal of LEED Silver.
- Kapi'olani CC Culinary Institute of the Pacific facilities at the former Cannon Club site along Diamond Head currently under design with the goal of LEED Silver.
- Leeward CC Education and Innovation Instructional Facility currently under planning and design with goal of LEED Silver.
- Windward CC Library and Learning Center facility currently under design with goal of LEED Silver.
- Honolulu CC Advanced Technology Training Center funded for design with a goal of LEED Silver.
- Systemwide Information Technology Center currently under design with goal of LEED Silver.

### Act 96 SLH 2006: Buildings and Facilities

(2) Incorporate energy-efficiency measures to prevent heat gain in residential facilities up to three stories in height to provide R-19 or equivalent on roofs, R-ll or equivalent in walls, and high-performance windows to minimize heat gain and, if air conditioned, minimize cool air loss. R-value is the constant time rate resistance to heat flow through a unit area of a body induced by a unit temperature difference between the surfaces. R-values measure the thermal resistance of building envelope components such as roof and walls. The higher the R-value, the greater the resistance to heat flow. Where possible, buildings shall be oriented to maximize natural ventilation and day-lighting without heat gain and to optimize solar for water heating. This provision shall apply to new residential facilities built using any portion of state funds or located on state lands;

#### AG: Not applicable; DAGS handles this.

- B&F: Not applicable. The department does not oversee the design, construction or maintenance of building facilities.
- DAGS: The PWD very rarely will be involved in residential facilities; however, energy-efficiency measures to prevent heat gain can apply to any facility. These measures are already taken into design consideration. One of the rare housing projects that is currently being accomplished by the PWD is the Leeward Homeless Shelters, Villages of Mā'ili transitional housing. Solar water heaters are being installed and will produce hot water for 80 units and laundry facilities. This work is being accomplished under the Governor's Emergency Proclamation to address the homeless situation on the Leeward Coast. The strategy for PWD on these measures is finding ways to improve, starting just simply by being more aware of these energy-efficiency measures, doing better review of designs, and considering new products and technologies.
- DBEDT: DBEDT coordinated the May 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center which was attended by about 500 people, including many from state agencies. The topics of R-19 insulation, radiant barriers, orientation, natural lighting, and natural ventilation were discussed at length.

DBEDT staff met with DHHL to incorporate Hawai'i BuiltGreen<sup>™</sup> requirements into DHHL's request for proposals for new housing developments on O'ahu and other islands that include the above provisions for new residences.

DBEDT provided DOE with the results of a pilot project, in which DBEDT participated, which tested different passive cooling strategies at Waipahu High School. DOE will consider the least costly of the alternatives—painting the roofs and walls of portable classrooms with heat-reflective coatings. This strategy should lower interior temperatures by as much as 10 degrees, either eliminating or alleviating the need for air conditioning.

DCCA: DCCA buildings are maintained by DAGS.

DHHL: DHHL will continue to promote, design and build new affordable homes using the Hawai'i BuiltGreen<sup>™</sup> and Energy Star® programs to ensure the designing and building of new energy and resource efficient homes in Hawai'i.

DHRD: Not applicable. The department does not own or operate residential facilities.

DHS: As applicable, DHS will continue to coordinate these activities with DAGS to effect energy efficient measures.

- DLIR: DLIR does not manage, own, or construct residential facilities or buildings. All facilities occupied by DLIR are constructed and managed by DAGS or in private building leases promulgated by DAGS Leasing Branch. DLIR will work with DAGS to incorporate energy efficient measures into building facilities occupied by DLIR.
- DLNR: DLNR does not have any residential facilities in its building inventory.

DOA: Not applicable since the department does not have any residential facilities.

DOE: DOE designs all roofs on new facilities to meet the R-19 or equivalent insulation standard. DOE also installs additional insulation when re-roofing older roofs to meet the R-19 standard or equivalent insulation standard where feasible. New schools are planned to meet LEED Silver requirements which should incorporate the use of insulation, orientation of buildings to maximize natural ventilation, use of daylighting, and possible implementation of solar water heating. DOE designs all new facilities to meet the R-11 or equivalent insulation standard but does not retrofit walls of existing buildings.

Schools being retrofitted for large air conditioning systems for multiple classrooms will be retrofitted with insulation and energy efficient windows to minimize heat gain and cool air loss where feasible. In addition, DOE has begun a number of pilot projects to look into the feasibility of various heat abatement strategies other than air conditioning. These include a heat abatement pilot at Kahuku High that looks at various options to cool portable classrooms, and a pilot involving possible heat abatement strategies at 'Ewa Beach Elementary.

- DOH: Not applicable. The Department has no residential facilities except for historic homes at Kalaupapa Settlement. These buildings are being restored to their original condition by the National Park Service.
- DOT-Airports: Not applicable at this time. DOT-Airports will apply this requirement if the division builds or funds any new construction or renovation to residential facilities. The Noise Attenuation Project in Hilo where homes are partially renovated has installed R-12.25 wall insulation and R-12.25 with R-38.4 attic insulation. The R value provided high heat resistance and sound insulation per requirements of FAA regulations.

DOT-Harbors: Not applicable to Harbors. Residential facilities are not within Harbors' scope of responsibilities.

DOT-Highways: Not applicable to the Highways Division.

DOTAX: DOTAX buildings are constructed and managed by DAGS.

FTZ: Not applicable; FTZ does not manage any residential facilities.

HCDA: HCDA has not constructed any residential buildings under three stories.

- HHFDC: HHFDC has three high rise buildings: One building is completing major renovations and one more building is scheduled for major renovation to start in August 2008. Whenever possible and architecturally and economically feasible, the R-value is being checked and increased. When not renewing the entire membrane roof material, a seal coating with a more reflective color is being applied. HHFDC has six two-story complexes that are being surveyed for proper attic insulation and ventilation. As appropriate, the result will be addressed.
- HHSC: When any renovations to existing residential facilities are planned, HHSC will incorporate energy efficiency measures to prevent heat gain whenever possible.
- HSPLS: Not applicable; HSPLS has no residential facilities.

HTA-CC: HTA has not constructed, nor does it intend to construct any residential buildings under three stories.

NELHA: NELHA does not have any residential assets. NELHA is prohibited from having residential structures on its lands.

- PSD: PSD obtained a \$500,000 G. O. Bond authorization (7/1/2007) from the 2007 Legislative Session for energy efficiency projects. It intends to conduct an energy efficiency assessment of all PSD facilities owned or leased by the department statewide. The DAGS/PSD consultant selection committee has recently recommended selecting InSynergy, Inc. to perform the aforementioned energy efficiencies assessments. Upon receipt of the planning "Notice-to-Proceed" (expected by 1/1/2009), the consultant will be tasked with completion of the assessments within 4 to 6 months. The majority of the subsequent efforts will be retrocommissioning. The initial assessment will provide retrocommissioning projects' scope[s] of work, estimate of probable costs, duration to complete retrofitting and project priority.
- UH: UH Mānoa Existing resident halls are not air conditioned. The new Frear Resident Housing recently completed includes air conditioning with individual unit controls to minimize energy consumption; building designed with long walls facing north and south, walls insulated, specified insulated glazing with low-e coating to minimize heat gain, and specified operable windows to minimize use of air conditioning. UH Hilo Existing resident halls are not air conditioned. Maui CC Existing resident halls are not air conditioned.

Systemwide, the University of Hawai'i will continue to apply the LEED rating system in all Capital Improvement Program new and major renovation projects. The design principles for energy-efficiency measures to prevent heat gain will be incorporated into the building to the extent possible.

### Act 96 SLH 2006: Buildings and Facilities

(3) Install solar water heating systems where it is cost-effective, based on a comparative analysis to determine the cost-benefit of using a conventional water heating system or a solar water heating system. The analysis shall be based on the projected life cycle costs to purchase and operate the water heating system. If the life cycle analysis is positive, the facility shall incorporate solar water heating. If water heating entirely by solar is not cost-effective, the analysis shall evaluate the life cycle, cost-benefit of solar water heating for preheating water. If a multi-story building is centrally air conditioned, heat recovery shall be employed as the primary water heating system. Single family residential clients of the department of Hawaiian home lands and any agency or program that can take advantage of utility rebates shall be exempted from the requirements of this paragraph so they may continue to qualify for utility rebates for solar water heating;

#### AG: Not applicable; DAGS handles this.

- B&F: Not applicable. The department does not oversee the design, construction or maintenance of building facilities.
- DAGS: Typical DAGS-managed State Office Buildings do not utilize enough hot water to make installation of solar water heating systems cost-effective. The DAGS overall strategy is to continue encouraging our "clients" (other state agencies that seek technical support and assistance from DAGS) to consider using solar water heating systems in their projects, whenever feasible or advantageous to the state.
- DBEDT: DBEDT coordinated the 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center which was attended by approximately 500 people, with many from state agencies. Solar water heating, life-cycle cost analysis, and heat recovery technologies were discussed at length.
  - DBEDT provided DHHL with brochures and other information on renewable energy, solar water heating, sustainable residential building design, and energy conservation at home to distribute to DHHL's clients and to implement on DHHL projects.

DBEDT prepared a life-cycle cost benefit analysis of four water heating technologies for the County of Kaua'i. Solar water heating achieved the least costly life cycle rating.

- DCCA: Not applicable; DCCA does not use hot water.
- DHHL: DHHL will continue to encourage beneficiaries to take advantage of utility rebates to install solar water heating systems. DHHL will identify efficient and conservation retrofit applications and develop a plan to assist the homesteaders to retrofit their homes (including solar water heater system, insulation/radiant barriers, low-heating systems, low-flow toilet and shower heads, Energy Star® appliances, etc).
- DHRD: Not applicable. The department does not own or operate any buildings or facilities.
- DHS: As applicable, DHS will continue to coordinate these activities with DAGS to maximize energy efficiency and cost effectiveness.
- DLIR: DLIR does not manage, own, or construct residential facilities or buildings. All facilities occupied by DLIR are constructed and managed by DAGS or in private building leases promulgated by DAGS Leasing Branch. DLIR will work with DAGS to incorporate solar powered systems to improve the energy efficient measures in building facilities occupied by DLIR.
- DLNR: DLNR's facility portfolio is limited. Most of buildings owned by DLNR are composed of base yards, harbor facilities and park restrooms. DLNR incorporates energy saving concepts into all of its owned facilities as appropriate. Energy-saving concepts include the use of solar water heaters. DLNR evaluates the feasibility of implementing energy conservation measures such as use of solar water heaters when capital improvement projects are designed. As DLNR staff learns more about energy efficiency and solar water heating design, they will incorporate these concepts into building and facility design and renovations.

Kaho'olawe Island Reserve Commission (KIRC): To reduce the electrical demands on Kaho'olawe, KIRC has converted two of its four residential water heaters on Kaho'olawe to solar power. KIRC is planning to convert the remaining water heaters and be fully solar-powered for hot water by the next fiscal year.

- DOA: May not be applicable since very few HDOA facilities have a need for water heating systems, however, as part of our retro-commissioning projects we will review the cost-benefit of converting to a solar water heating system.
- DOE: DOE school cafeteria kitchens use gas water heaters and boilers. This reduces the opportunities for savings by replacing existing systems with solar water heating. However, upon replacement of the existing water heating system, DOE will analyze the life cycle cost for solar water heating system.
- DOH: The Department will strive to install solar water heating systems in its new buildings or retrofits. Presently, there are no plans to change any water heating systems at any of the health centers. An assessment will be done when a project of this nature is initiated to determine if the water heating system being changed can be converted to a solar system.
- DOT-Airports: Not applicable at this time. DOT-Airports will apply this requirement if we build or fund any new construction or renovation to residential facilities.
- DOT-Harbors: There is minimum need for hot water in the commercial harbor system. Therefore, this requirement is not applicable to the Harbors Division.
- DOT-Highways: The Highways Division will perform life cycle cost analysis when replacing water heating systems. The division's Kaua'i District Office has installed an "on-demand" propane water heating system.
- DOTAX: DOTAX buildings are constructed and managed by DAGS.
- FTZ: Not applicable; FTZ does not have a water heating system for its facility.
- HCDA: HCDA does not own any buildings where it has decision making responsibility over the heated water system.
- HHFDC: Solar water heating panels are installed on one of our Big Island projects, La'ilani in the Kailua-Kona area. Presently, we are replacing units that have begun leaking. Of the 200 units available, approximately 10 % have been replaced.

Solar water heating is not an option at all properties. To maximize the efficiency that can be gained it is important that there be sufficient storage capacity for use at a later time. Replacement of already installed solar panels does not qualify for rebates. A survey will be conducted of the remaining outer island and O'ahu -based low-rise projects as to the suitability of installing solar water heating panels.

All three of HHFDC's high rise buildings have central air conditioning for the commercial tenants only. Presently, one, Pohulani Elderly, is being studied for a/c plant replacement and heat recovery is being considered.

HHSC: HHSC shall evaluate the benefit of solar water heating for their facilities whenever improvements are planned or funded.

HSPLS: Not applicable.

- HTA-CC: HTA has reviewed with the Hawai'i Convention Center management its existing hot water systems to see if solar hot water could be added. Based on the limited frequency the hot water is needed and the large quantities that are needed on short notice during those periods of time, solar hot water isn't practical for their application. There would be no cost savings, only added cost.
- NELHA: NELHA installed solar water heating systems many years ago. NELHA has also air conditioned all of its buildings for many years using cold deep seawater. NELHA is the world leader in implementing this strategy, which has been neglected by other agencies and private businesses in Hawai'i that prefer to use electricity for air conditioning requirements. The current estimate is that for four relatively small buildings, the use of seawater air conditioning saves \$20,000 \$25,000 per month in electricity expense. In the past year, NELHA and the Kona International Airport have been in discussion about NELHA providing the airport with "cold" when its new enclosed terminals are opened in several years. The architects and engineers working on that project recognize the tremendous cost savings that can be garnered through use of this strategy.
- PSD: With the collaboration of DAGS-Division of Public Works, the department intends to "piggyback" onto DAGS' Lead by Example projects, such as retrocommissioning and retrofitting. As mentioned earlier and throughout this FY 2008 PSD report, the department intends to survey all PSD facilities statewide, owned and/or leased, to identify opportunities that shall yield energy savings, optimize the usage of sustainable materials and replace/upgrade operating systems that result in measurable savings as called for in Act 96.

As mentioned in §2 above, a planning consultant has been selected. PSD anticipates needs assessment actions should be underway by January 2009 and retro-commissioning actions

commencing between 1<sup>st</sup> and 2<sup>nd</sup> quarter of FY 2010. Projects will be implemented via a prioritized matrix to be developed by InSynergy.

PSD and DAGS, as expending agency, are striving to pursue the assessment actions on an expedited tract; however, PSD believes that the care with which the initial assessment actions are done will ultimately lead to "streamlining" all subsequent implementation actions that follow.

UH: UH Mānoa – Frear Resident Hall completed with a hot water system utilizing a heat recovery system. UH Hilo – The Student Life Center completed with a heat pump system for hot water heating. CC – No new installation of hot water system. Systemwide, the University of Hawai'i will continue to apply the LEED rating system in all Capital Improvement Program new and major renovation projects. The design principles for solar water heating systems where it is cost effective will be incorporated into the building to the extent possible.

### Act 96 SLH 2006: Buildings and Facilities

- (4) Implement water and energy efficiency practices in operations to reduce waste and increase conservation;
- AG: All departmental staff have been provided tips on energy efficient practices and information on the benefits of energy efficiency. With the assistance of DAGS, signs have been posted to remind staff to turn off computers, lights, and other equipment when exiting. Water leaks are to be reported to the Administrative Services Office immediately, including sprinkler systems and outdoor faucets.
- B&F: The department encourages employees to initiate and implement energy efficient practices (i.e. turning off office lights when not in use or when leaving for the day, turning off computer terminals at the end of the day, distributing Energy Star® saving tips, etc.). The department stresses the importance of energy saving efforts initiated by DAGS.
- DAGS: As funding has become available, the department has initiated various energy conservation/efficiency projects for DAGS facilities statewide. The projects are in various stages of design and construction. These projects include: the replacement of aging air conditioning and elevator equipment; retrofitting with energy efficient electronic ballasts and super T-8 lamps; the installation of light sensor switches; and the installation of protective tinting on building windows to reduce heat gain.

A major pilot project that was initiated in FY 2008 is the Central Services Division Photovoltaic (PV) System. A Request for Proposals was solicited to provide PV/solar power via a Power Purchase Agreement (PPA). The power provider, through a PPA, would design, install, operate, maintain and sell power to the state at a rate that is anticipated to be lower than the HECO rate and the PV system would also reduce the consumption of energy generated by fossil fuels. Proposals were received and we are currently under negotiations.

The landscape irrigation system at the Kalanimoku Building has been replaced with a system that incorporates rain sensors and a sub-meter as water conservation measures.

During fiscal year '08, eleven pilot retrocommissioning projects have been initiated on O'ahu, Hawai'i, Maui and Kaua'i to develop strategies that would result in energy savings. Some projects have completed the investigation phases and implemented minor repairs. Other recommended work will need to be included in future CIP budget requests.

In addition to DAGS facilities, DAGS Central Services Division and PWD has worked with the Hawai'i State Public Library System (HSPLS) in implementing energy efficiency practices. Projects being accomplished by DAGS for the HSPLS include retrofitting with energy efficient electronic ballast and super T-8 lamps. In FY 2008, twelve libraries throughout the state were bid out for the retrofits and/or accomplished by DAGS in-house crews. DAGS currently has 21 library lighting retrofit projects under design in which are expected to be bid and constructed in FY 2009.

DAGS, on behalf of the HSPLS, also plans to implement retrocommissioning on all libraries statewide during FY 2009 subject to available funding. Qualifications from interested retrocommissioning consultants have been solicited and are currently pending selection for the various projects.

Other departmental initiatives to save water and electricity include:

- The Kakuhihewa Building in Kapolei uses non potable water for landscape irrigation.
- Low-flow plumbing fixtures are specified for new construction and renovation projects. Existing fixtures are being replaced with low-flow fixtures as replacement is required. Some ultra-low flow urinals (one pint per flush) have been installed to examine how well they work and future installations will be completed as funding becomes available.
- Sensor-type flush valves and faucets have been installed and future installations will be completed as funding becomes available.
- DAGS has recently completed a project to install a non-chemical filter system for the A/C System at the State Capitol Building. This is be the first of this type of system installed at a DAGS managed facility and should decrease domestic water usage and also provides the option of using the water for other non-potable ways.
- DBEDT: DBEDT coordinated the 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center, attended by many from state agencies. Water and energy efficiency practices were discussed at

length as a means of achieving LEED Silver and Hawai'i BuiltGreen<sup>™</sup> 3-Star Level. Hawai'i BuiltGreen<sup>™</sup> is a program of the Hawai'i Building Industry Association, a non-profit trade organization representing building developers, builders, suppliers and associates.

DBEDT developed documents, spreadsheets and other material to assist DAGS and other agencies with prioritizing energy conservation measures related to the building envelope, air conditioning, lighting, motors and other energy systems.

DBEDT staff are on the Building Owners and Managers Association of Hawai'i (BOMA) Energy Committee and participated in BOMA's Sustainability Week and Sustainability Summit in May 2008. DBEDT staff also developed a Green Office and Retail Checklist and Greening Tips for State of Hawai'i and private sector entities to promote and to implement water and energy efficiency practices to increase conservation and reduce waste.

DBEDT continued to meet with the Board of Water Supply (BWS) on water-saving technologies that might be used in BWS' on-going water efficiency program.

DBEDT convened the Lead By Example initiative's Leadership Working Group to brief over 20 agency and departmental managers about energy and resource efficiency topics.

DBEDT, with assistance of a consultant, Envirospec/Green Purchasing Institute, initiated a Green Cleaning Products pilot testing program for selected K-12 schools and the University of Hawai'i with the goal of expanding use throughout state facilities. One benefit of green cleaning products includes using concentrated products which require less energy to transport, and which use less water. Green cleaning products which are made of environmentally preferable materials sometimes require less water rinsing due to their reduced toxicity.

- DCCA: Continued the practice of using water saving fixtures throughout the building. The building has a lighting system that utilizes motion sensors. All exterior bulbs have been replaced with compact fluorescents. DCCA has reviewed cost and consumption data for air conditioning usage and will implement a plan to reduce the air conditioning consumption where appropriate. The department implemented a schedule whereby the landscape is watered during the evening hours and only for 10 minutes. DCCA distributed a memorandum from DAGS outlining conservation actions. The department also solicited additional suggestions for conservation from staff; upon completion of review, DCCA will implement measures that are feasible.
- DHHL: As indicated in item #3, above, every effort will be made to comply with the water and energy efficiency practices in operations to reduce waste and increase conservation.
- DHRD: The department encourages all employees to implement energy conservation practices. Examples include turning off the lights in the restrooms and hallways at the end of the day; turning off copier machines and computers rather than leaving the equipment on sleep mode; using the stairs; and turning off office lights when going to meetings. In May, DAGS implemented the following energy reduction initiatives for the Leiopapa A Kamehameha building, which this department occupies: (a) adjusted the starting time for the building air conditioning system so that it turns on an hour later, and (b) conducted preliminary assessments for a retrocommissioning project.
- DHS: DHS continues to issue water and energy conservation procedures for buildings and offices, in coordination with procedures issued by DAGS.
- DLIR: An assessment of electricity usage was completed for nine of the DLIR offices that are not maintained by DAGS Central Services. The assessment of the nine offices covered the period July 1, 2005 through June 30, 2008. Based on the review, nine offices utilized a total of 905,325 kilowatt hours resulting in a total cost of \$270,521.52. Based on the energy usage, DLIR will work with DAGS to insure that best energy saving practices are incorporated into reminder memoranda as required to address energy conservation. DLIR will also work with DAGS to incorporate some of the following energy saving measures:
  - Replace old toilets and sinks with low flow fixtures (toilets and sinks),
  - Replace old lighting fixtures,
  - Request that DAGS Leasing Branch conduct energy efficiency analyses in privately-leased buildings and work with landlords to replace old toilets, sinks, air conditioners, and lights.
- DLNR: The department installs low-flow fixtures (toilets and sink faucets) to replace older fixtures, which use more water, as department facilities are renovated. Additionally, some remote restrooms use composting toilets, which require very little water. The department has installed waterless urinals in some boat harbor improvements. Additionally, the Commission on Water Resource Management (CWRM) recently received a donation of low-flush toilets from the Board of Water Supply. CWRM

provided this donation to DLNR Engineering Division to replace any damaged units which will allow DLNR facilities to continue to increase water efficiency.

Staff are reminded to turn off equipment when not in use, keep blinds closed, and report equipment malfunctions. Energy efficient light bulbs are used where feasible and timed sensors have been installed to allow automatic shutoff of lights. Additionally, natural ventilation and lighting are used in most comfort stations. When purchasing new equipment the department tries to purchase energy efficient machines when available, such as energy efficient copiers, etc. The department also tries to remind staff to turn off computers and other appliances that are not in use, or at the end of the day.

Kaho'olawe Island Reserve Commission (KIRC): KIRC is planning to implement an energy conservation demonstration project by remodeling one of its six berthing facilities to reduce energy consumption. Through improved ventilation and innovative design features, KIRC hopes to improve the building's natural air circulation, improve shielding from the hot, desert-like conditions of Kaho'olawe thus reducing cooling cost significantly. If this project is successful, plans will then be developed to convert all remaining berthing facilities to this new design and significantly reduce energy requirements and cost.

Kaho'olawe presents a unique opportunity for alternatives to reduce energy consumption due in part to the island's small population and isolation. Additionally, because of the island's unique status as a cultural and environmental preserve, the use of alternative water systems and energy resources is believed to be most appropriate and necessary. As part of KIRC's mandated requirements under HRS 6-K, the restoration program brings 15 to 20 volunteers, adults and students, to the island on Mondays to assist in planting native plants as part of the restoration program. The students normally leave Kaho'olawe on Thursday afternoon. To achieve the conservation of water and energy, KIRC recaptures all the water from the shower facilities. The Reverse Osmosis system produces about 1,500 gallons per day of fresh water, which is more than adequate for the demand.

There are no harbor facilities on Kaho'olawe, in the past the majority of equipment, personnel and supplies have been transported by helicopter. Recently, KIRC has obtained and is operating a 40-foot landing craft that is now transporting the majority of its personnel, equipment and materials. KIRC has significantly reduced fossil fuel usage by shifting to ocean transport verses helicopter.

Additionally, the 11-acre base camp on Kaho'olawe is not connected to the utility grid and operates with diesel generators. One of the steps recently taken was to install a more energy-efficient generator, which reduced diesel usage from 150 gallons per day to 75 gallons per day. As further energy savings projects are implemented, the energy requirements on Kaho'olawe will decrease, at which time KIRC is planning to replace the current diesel generator with an even smaller unit that will further reduce diesel fuel usage.

DOA: DOA continued to identify energy efficiency projects and related costs. The department delegated \$80,000 in general obligation bond funds to DAGS to initiate retrocommissioning study of departmental facilities. Budget requests for funding to implement specific energy efficiency projects for FY09 were submitted. The legislature appropriated \$50,000 in general obligation bond funds in FY09 in the capital improvements project budget for one energy efficiency project.

The department continued to retrieve information electronically on gas consumption and odometer readings from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum. DOA continues to use a vehicle refueling log for programs that have vehicles which refuel at places other than DAGS, Tesoro and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum.

DOA monitored and compiled kWh consumption data and cost for electricity for FY08. The department distributed DAGS' memo requesting employees to conserve energy and to report any water waste from open faucets, leaky plumbing fixtures, and broken and/or inefficiently run irrigation systems. DOA developed a spreadsheet to compare FY08 data to FY05, FY06, and FY07 on electricity kWh consumption and percentage increase/decrease from previous year, and distributed it to program managers for their review and information.

DOE: DOE has developed an internal system that enables the comprehensive managing of all utilities – electricity, water, sewage disposal, and gas – for all schools through a central office. As of March 1, 2007, the payment for all utilities was centralized into one office. The department is now able to

monitor utility use by schools, specifically identifying schools with higher than anticipated consumption.

DOE implemented a school energy conservation program on July 1, 2007. DOE has calculated the "unadjusted" allocation of kilowatt hours (kWh) for all schools using the average electricity consumption in the 36 months through June 2006 as a base. Beginning this school year, schools that reduce their consumption below the allocated amount will receive half the value of the savings; schools that fail to reduce their consumption below the allocated amount. The state office will bear the risk of increases (and benefit from any reductions) in electricity rates. We will reconcile the school kWh usage against the allocation twice a year, in January for the preceding July through December, and in July for the preceding January through June. Schools earning a rebate will receive those funds via an allocation from the electricity funds and will be able to use those funds at their discretion. Schools requiring a charge back will receive a bill for collection from the Auxiliary Services Branch.

Immediate steps for conservation programs continue and are listed as follows:

- Continue with implementation of LEED Silver for new and major construction projects. Training for LEED New Construction has been completed by key DOE personnel. Supplemental training is required on "LEED for Schools" guidelines just recently released by US Green Building Council.
- Continue with installation of low-flow bathroom fixtures whenever fixtures require replacement.
- All incandescent lamps are being replaced with compact fluorescent lamps (CFL).
- A study for measuring the effectiveness of motion (occupancy) detectors for controlling classroom lighting has been completed. Future Energy Service Company (ESCO) work will include motion/occupancy detection switches for classroom lighting.
- Life Cycle Costs Analysis (LCCA) will be performed on school equipment and operations.
- LCCA results will be used to determine product selection for ESCO, Performance Contracting, Municipal Leasing, and/or Purchase Power Agreement activities.
- Continue meetings with vendors seeking new energy conserving technologies. Continuation with pilot (test) studies of new promising technologies.
- Establishment of an Energy and Water Conservation "Steering Committee" or "Task Force" within the School Facilities and Support Services to expedite and streamline multiple conservation activities between branches and within the DOE as a whole.
- Open discussion with the Board of Water Supply to seek innovation water conservation concepts, projects, and/or studies such as Irrigation Management Control System, plant species, drip irrigation, and captured rainwater.
- Install an electrical submeter all new facilities.

Immediate steps for school conservation are listed below: Electricity:

- Set air conditioning so that the room temperature is 76 degrees.
- Do not turn on any air conditioning until 7:00 a.m. or (if the air conditioning unit is turned on and off manually) until the room temperature reaches 74 degrees, which ever comes later, and turn off all air conditioning no later than 4:30 p.m.
- Use timers to turn off 75 percent of night lights between the hours of 10:00 p.m. and 6:00 a.m.
- By June 15, 2009, replace all appliances (refrigerators, microwave ovens, toasters, coffee makers, rice cookers, etc.) in classrooms and offices with Energy Star®-rated appliances. Personal appliances should be limited to no more than one of each on each floor of a building. All other personal appliances shall be removed by December 31, 2008.
- Purchase or lease only Energy Star®-rated computers, copiers, printers, and servers.

• Turn off computers, printers, and copiers at the end of the day.

Water:

- All schools and offices shall cut back on water usage by at least 10 percent. Water lawns early in the morning or late in the afternoon or evening.
- Timers on automatic sprinklers should be adjusted to water the lawns on Sundays, Tuesdays, and Thursdays, either before 9:00 a.m. or after 5:00 p.m.

- Manually water lawns on Mondays, Wednesdays, and Fridays, either before 9:00 a.m. or after 5:00 p.m.
- Car wash fundraisers should be curtailed.
- Flooding water beds or shooting down lanai areas is highly discouraged.
- DOH: The department encourages its employees to be energy efficient. Employees have been advised to conserve energy thru routine emails and signs posted in the building. There is music playing in the stairwells to encourage employees to use the stairs to conserve energy and improve their health.
- DOT-Airports: The Airports Division must try to minimize water usage, but must also be mindful of the time constraints on passengers. The airport is exempt from rules on low-flush toilets to accommodate high use and passenger time restrictions, but implements sensors for toilet flushing and sink use to keep from wasting water. The Airports Division utilizes R-1 water where possible and non-potable water for landscape irrigation. As an example, Kona International Airport at Keāhole uses the effluent from their Wastewater Treatment Plant for irrigation, while Honolulu International Airport uses non-potable water from the Sumida Watercress Farm for irrigation. At Honolulu International Airport and Dillingham Airfield, the Airport has a contract with an outside firm to provide monitoring of the water system so leaks can be found and repaired quickly to keep from wasting water. Meters are also read and checked against prior usage to see if there is a spike in water usage, which may indicate a problem.

The airports must also try to conserve energy usage, but must also be mindful of the comfort level of the passengers and workers. At Honolulu International Airport, there is an Energy Monitoring and Control System to turn off lights in areas that are not in use and reduce or eliminate air conditioning in these same areas. Current projects at Honolulu International Airport include the elimination of older, less efficient chillers with new chillers and a chilled water loop system which will enable chillers to be shut down during low utilization periods and to operate on fewer chillers, but at a higher efficiency. At Kona International Airport at Keāhole, plans are continuing for the use of cold "deep sea" water for chilled water for cooling enclosed areas, and installing a new parking deck covered with photovoltaic cells to provide the airport with its current energy needs.

DOT-Harbors: Water efficiency:

- Install, where practical, low flow toilets, low flow shower heads, and faucet aerators.
- Install timers or require staff to conduct irrigation and watering of plants during early morning or evenings to reduce water lost to evaporation.

• Develop program milestones to encourage 100% implementation over a period of time. Energy efficiency:

- Install timers onto HVAC and/or motion detectors onto lighting systems and other equipment as appropriate.
- Install tinting to windows and glass doors as appropriate.
- Monitor lighting levels and use natural window/skylight lighting if sufficient.
- Turn off lights in room not in use.
- Installed a more energy efficient a/c unit for the Harbors Division Administration building.
- Develop program milestones to encourage reduction of energy consumption over a period of time.

DOT-Highways: Water Efficiency –Design new xeriscape landscaping where possible. Energy Efficiency –The Highways Division continues to install energy efficient traffic signal lamps in new installations or when traffic signals are modified, and has programmed the replacement of computer equipment with Energy Star® compliant equipment.

DOTAX: DOTAX buildings are constructed and managed by DAGS.

FTZ: FTZ had two forty-ton chiller units installed about five years ago and one fifty-ton chiller unit installed two years ago. The chiller units were purchased and installed based on a 2001 Energy Feasibility Study of the Foreign-Trade Zone No. 9 prepared by Global Engineering & Construction, LLC. Approximately 40 new individual air conditioning units with high efficiency motors were purchased and installed last year, also based on the 2001 study. FTZ uses T8 fluorescent lights in its administrative and tenants' offices.

FTZ had Mr. Howard Wiig, an Institutional Energy Analyst from DBEDT's Strategic Industries Division brief FTZ staff on energy efficiency, specifically in the areas of lighting and HVAC. As

result, FTZ completed a photometric survey before installing a new perimeter lighting system. This eliminated five 400W metal halide fixtures which will provide substantial savings.

FTZ had a lighting specialist, Sterling Nakano, discuss with staff the options for replacing the incandescent light bulbs in the warehouse with energy efficient CFL bulbs. FTZ is taking steps to replace the 300W bulbs with much more energy efficient CFL bulbs. This project should be completed by the end of 2008.

- HCDA: HCDA has installed moisture sensors on irrigation system in Kaka'ako Waterfront and Kaka'ako Makai Gateway Parks and contracted for Kewalo Basin Park to conserve water.
- HHFDC: All property managers have been notified of water restriction hours and the number of days that green belt areas can be watered. This process is monitored with the use of Board of Water monthly figures. Each spike up or down is accounted for. Additionally, all properties are being inventoried for the need and installation of sub-meters. This should eliminate paying for run-off water that goes into the ground and down the storm drains and not back to the treatment plants.
- HHSC: HHSC facilities are replacing existing water closets with low-flush water closets whenever possible. HHSC is also considering installation of non-chemical water treatment devices on the cooling towers to help reduce water usage.
- HSPLS: HSPLS has replaced the aging air conditioning systems at Mililani and Salt Lake-Moanalua Public Libraries to improve operating and energy efficiency in FY08. HSPLS has executed contracts through DAGS to retrofit lighting fixtures at all 51 public libraries, statewide. These fixtures are being replaced with energy efficient electronic ballasts and super T-8 lamps.
- HTA-CC: Water conservation practices continue to be in place at the Hawai'i Convention Center. HTA continues to look into other methods including rain catchment. Additionally, new super T-8 retrofits and replacement bulb and ballast packages have been installed in the exhibition halls, ballroom, administrative areas and the fire stairwells.
- NELHA: NELHA uses seawater air conditioning wherever practicable, even in pump station control rooms. The cost of installing such equipment, most of which is built in NELHA's own shops, is negligible compared to the savings it can generate. NELHA uses timed irrigation systems, produces much of its own drinking water, and turns off lights when nobody is in a room. Computers are shut down when not in active use. In some areas, seawater instead of potable water is used to irrigate grass areas.

To the extent practicable, NELHA uses a flexible work week schedule -4x10's for the water quality control laboratory and a similar schedule for CEROS employees. This has greatly reduced employee fatigue and helped to generate energy savings in terms of motor vehicle fuel for the island. NELHA would definitely be capable of introducing even more flexible hours for approximately onehalf of the staff.

NELHA's average monthly HELCO electrical bill is about \$138,000. The only items in that bill over which NELHA has control are lights, computers, and a/c in its own buildings. All other electricity is used to pump and distribute seawater to the commercial tenants at NELHA, and NELHA has no control over their usage, which results in demand charges since use of water is unrestricted. NELHA can influence only about \$20,000 per month of the total energy consumption at the facility. The practices NELHA instituted years ago and still follows include: turning off bathroom lights when the room is not in use, turning off office lights during the lunch hour and whenever outside light is adequate, turning off computers when not in use, operating the Gateway buildings without inside lighting and relying on ambient outside light to the greatest possible extent.

- PSD: PSD will collaborate with DAGS-Division of Public Works to contract for the retrocommissioning of Public Safety facilities, statewide. This is a process to verify whether or not the building environment is operating properly and where "sick" buildings are discovered, it is the process of providing fixes for them to create a better environment. Additionally, the department will request DAGS to scope opportunities for retrofitting various systems, such as lighting, to reduce the levels of energy consumption. Finally, as funding allows, a survey will be conducted to evaluate energy savings opportunities and strategies to implement same via widely used alternative financing strategies.
- UH: Systemwide Energy and water-efficient retrofits in routine renovations are applied where feasible. Windward CC – sub-metering all buildings, air conditioning, and irrigation to obtain lower operating costs. Kapi'olani, Leeward, and Honolulu CCs – planning sub-metering of air conditioning and irrigation units to obtain lower operating costs. Maui CC – new renovated Student Center Building includes waterless urinals. Waterless urinals are being incorporated into the design of the Nursing Portables and new Science Building projects.

Systemwide, the University of Hawai'i will continue to implement water conservation and energy efficiency practices in operations through its repairs and maintenance programs.

#### Act 96 SLH 2006: Buildings and Facilities

- (5) Incorporate principles of waste minimization and pollution prevention, such as reducing, revising, and recycling as a standard operating practice in programs, including programs for waste management in construction and demolition projects and office paper and packaging recycling programs;
- AG: All purchasing staff have been advised to first consider recycled materials, especially paper, when reviewing and processing purchase requisitions. AG offices continue to utilize the recycle bins in the copier rooms and within each division boxes are provided for recycling paper. Staff have also been trained to save and transmit documents electronically, whenever possible.

B&F: The department participates in an office paper recycling program whenever possible.

- DAGS: Recycling programs for office paper and cardboard for 13 major state office buildings serviced by the department are in place. An informal program for recycling aluminum cans, glass and plastic bottles exists in each facility. These items are usually recycled by the custodial staff and/or building occupants. Also, reverse vending machines have been installed at the State Capitol by Reynolds Recycling as a pilot project. These machines allow individuals to redeem aluminum cans, glass and plastic bottles for cash. During this fiscal year, the recycling effort will be expanded to include the recycling of discarded computers, office equipment and furniture.
- DBEDT: DBEDT coordinated the 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center, attended by many from state agencies. Build It LEED from the Cascadia USGBC Chapter was presented during one of the breakout session tracks on Construction, and demolition waste management and pollution prevention practices were discussed at length as a means of achieving LEED Silver and Hawai'i BuiltGreen<sup>™</sup> 3-Star Level.

GBS has met with and provided technical assistance to DAGS on model Construction Waste Management Specifications for use on State of Hawai'i projects.

DBEDT's agreement with Envirospec supported a green cleaning pilot project with State of Hawai'i agencies. Using green cleaning products reduces the volume of toxic chemicals entering the wastewater stream as well as the amount of volatile organic compounds and other toxic chemicals that may be released during the cleaning process. Green cleaning products are often packaged in easy-to-recycle and re-use containers. The pilot sites for this project were coordinated and selected with the Department of Education and the University of Hawai'i.

DBEDT, with others, recommended to DAGS that cardboard be included as a resource to be separated and recycled. The suggestion was implemented.

DBEDT introduced to DAGS an extremely fast-acting and energy efficient electric hand dryer which would eliminate the need for paper hand towels. Although that particular technology was not used, DAGS did later install electric hand dryers in state rest rooms.

The DOT Harbors Division utilized a marine debris recycling bin to recycle marine debris found on DOT-Harbors property. The bin was installed by a Marine Debris Task Force that includes DBEDT.

DBEDT convened the Lead By Example initiative's Environmentally Preferable Purchasing (EPP) Working Group to brief agency and departmental managers about how 'green purchasing' helps minimize waste and offers cost, energy, and resource efficiency benefits. DBEDT staff are working with the State Procurement Office to add more EPP products to the procurement list.

- DCCA: DCCA sent a reminder memorandum to departmental staff regarding energy and water conservation, and recycling. The department encouraged the use of recycled paper and placed blue recycle bins in the building to facilitate recycling. Recycled paper is picked up weekly by Island Recycling, contracted through DAGS.
- DHHL: DHHL will continue to encourage staff to recycle office paper and other recyclables when possible. DHHL plans to develop a comprehensive strategic plan for the protection, restoration, and preservation of our lands and facilities.
- DHRD: The department participates in the office paper and telephone book recycling program coordinated by DAGS and also recycles used printer cartridges.
- DHS: DHS continues to implement waste minimization and recycling procedures, consulting with the appropriate agencies such as DAGS and DOH.

- DLIR: In FY08, DLIR received an Environmental Preferable Purchasing (EPP) survey and the results of the consolidated survey results will be forwarded to the Department of Health in accordance with the required deadline. The following are the mandated Federal and State laws, and the applicable Administrative Directives:
  - Resource Conservation and Recovery Act (RCRA), Section 6002, 42 U.S.C. 6962. RCRA requires state and local government agencies and their contractors receiving appropriated federal funds to purchase EPA-designated recycled content products.
  - Section 103D–1005(b) of the Hawai'i Revised Statutes. Section 103D-1005(b) requires state purchasing agencies and encourages county purchasing agencies to: apply preferences to purchase of products with recycled content; be consistent with RCRA Section 6002, E/O. 13101 and its progeny; and ensure, to the maximum extent economically feasible, the purchase of materials that may be recycled or reused when discarded and to avoid the purchase of products deemed environmentally harmful.
  - Administrative Directive 06-01, signed by Governor Lingle in January, 2006, requires state agencies to purchase environmentally preferable products that reduce their impact on the environment and improve indoor environmental quality. Also included are Energy Star® and low toxicity products.

DLIR will continue to utilize the SPO price list and require all programs to purchase recycled and environmentally preferable products.

- DLNR: DLNR encourages its staff to implement office paper recycling and such a program is in place. DLNR has begun to incorporate energy savings practices into design projects such as the recycling of existing asphalt and concrete pavement into backfill material. Kaho'olawe Island Reserve Commission (KIRC): KIRC has very specific SOPs in place regarding recycling waste and is in the process of converting all of paper goods, specifically paper "china," to biodegradable products.
- DOA: DOA continued to work with DAGS to have Island Recycling on O'ahu pick up two bins of white paper once a month that employees place in recycling bins. The department continued to use a container next to the vending machine to collect empty soda cans for recycling. Information was distributed to departmental employees regarding the University of Hawai'i eWaste Disposal Day which provides an opportunity for Hawai'i state departments and residents to dispose of computers and other unwanted electronic equipment by dropping them off at various UH campuses.
- DOE: Construction projects which incorporate LEED standards require strategies for waste management and recycling of construction materials. The recycling of office paper and packaging is being explored; however, the additional cost of such programs does not make recycling feasible at this time due to budget restrictions. About 45 schools on O'ahu participate in the Honolulu City and County community recycling bin program. In addition, schools are incorporating recycling activities into their fundraising programs.
- DOH: All facilities are encouraged to recycle and reduce waste. Bins are available for recycling cans, bottles and paper. Programs are encouraged to go "paperless." Two sided copying is a requirement.
- DOT-Airports: The Airports Division has implemented a statewide dedicated unit for environmental compliance. This consists of Environment Health Specialists located at the major airports (Honolulu International Airport, Kona International Airport at Keāhole, Kahului Airport and Lihu'e Airport) to ensure compliance with all environmental regulations and provide training to tenants and employees with regards to environmental regulations. At all airports, white paper and cardboard are recycled and the amount recycled is monitored. Glass, newspaper, plastic and aluminum recycling is made difficult by security regulations at airport locations but recycling programs are in place at all major airports.
- DOT-Harbors: The division requires double sided printing from copiers and printers as practical. Recycling bins for aluminum cans, bottles, plastic and papers are provided where convenient. DOT-Harbors will develop program milestones to encourage 100% implementation over a period of time.
- DOT-Highways: The Highways Division has been using electronic documents where possible to eliminate the need for paper. The division is also working with industry to find a way to use recycled products in our pavements without losing quality.

DOTAX: DOTAX's standard operating practices include monthly paper recycling.

FTZ: FTZ recycles cans and paper products. Products to be recycled are captured and taken to the recycle center once a quarter.

- HCDA: HCDA has incorporated recycling of bottles, cans, plastic and paper within its office. In demolition projects, the contractor is encouraged to separate and recycle materials whenever practical.
- HHFDC: Most office paper used by HHFDC is labeled 30 % post-consumer content. HHFDC has recycle boxes throughout the offices for depositing non-sensitive paperwork and a shredder to dispose of sensitive paperwork. Either way, paper, as much as possible, is recycled. All restroom paper products are also labeled as containing recycled paper. This holds true for all the rental properties in the agency's portfolio. Most of HHFDC's construction is reconstruction. As specifications are being written it is suggested to the architects and engineers concerned that guidelines need to be given regarding recycling demolition materials. This will limit the amount of waste going to the landfills.
- HHSC: HHSC facilities have implemented recycling as standard operating practice.
- HSPLS: HSPLS continues to participate in recycling waste paper through the DAGS-contracted private disposal companies, statewide.
- HTA-CC: The Hawai'i Convention Center continues to have an extensive recycling program for both administrative areas and events. The Center partners with show management to maximize the recycling of event material and donate excess food to charities that use it to feed the homeless.
- NELHA: NELHA recycles everything that is recyclable. Recyclable trash from the adjacent beach park trash containers is stolen on a nightly basis by human scavengers. NELHA stores old equipment (including computers, software, pipe, pump parts, old vehicles, etc.) for potential reuse in view of how difficult it is to obtain authority for the purchase of new equipment. Everything that can be rebuilt and reused is rebuilt and reused (rebuilding the facility's own motors and pumps saves quite literally thousands of dollars annually, when one considers that a simple impeller for a 200 hp pump costs \$18,000, one can image the cost to have the overhaul done through outside services.) NELHA's boneyard is a source of much valuable material that can be used for patches, repairs, and other needs; for example, replacement parts as in many instances replacement parts of much of NELHA's equipment cannot even be purchased any longer as the manufacturers have ceased servicing the equipment.
- PSD: PSD is recommending that the department's Inspection and Investigation Office (IIO) coordinate efforts with all PSD programs, writing the necessary Policies and Procedures and implementing practices to minimize the accumulation of waste and/or pollution reduction/prevention as a standard operating procedure throughout the department. PSD's Inspection and Investigation Officer has concurred with this recommendation and assigned his Environmental Health, Safety and Sanitation Specialist the duty of working will all PSD units to implement it.
- UH: <u>University of Hawai'i System</u> As part of a national program, Apple Computer e-cycled the University's electronics at no charge. University departments scheduled pickups which ran through July 31, 2008.

<u>University of Hawai'i at Mānoa</u> – 538 tons sent to the landfill; 953 tons sent to H-Power; 12.75 tons of computers recycled (not including ITS recycling days); 367 tons of metal recycled; 140 tons of paper and cardboard recycled; 375 tons of green waste recycled at Hawaiian Earth Products; approximately 200 tons of greenwaste turned into mulch and used on campus. Total waste: 2,585 tons, of which 1,094 tons were recycled, giving UHM a 42% recycling rate.

<u>University of Hawai'i at Hilo</u> – UHH participates in e-waste recycling by participating in both the Apple Computer recycling and County of Hawai'i recycling. For the times when no e-waste "drives" are scheduled, UHH takes old computer equipment to Bayside Computer Center for proper recycling. UHH has dozens of recycling bins on campus. Recycled items are sorted (white paper, newspaper, mixed paper, cardboard, glass, plastic, aluminum). Sorted recycled items are picked up by a local vendor (Business Services Hawai'i) and transported to a local processing plant. HI-5 redemption containers are emptied by University clubs as fund raisers. UHH Housing dormitories have seven different "collection locations" for recycling. UHH Main Campus has two major collection locations for recycling totes, and two cardboard dumpsters. As necessary, special arrangements are made to pick up enormous amount of shredded documents at the end of yearly cycles. UHH food vendors use reusable plates, glasses, tableware where practical for eat-in dining, and paper products where practical for carry out dining. Food by-products are used as slop for farm pigs.

<u>University of Hawai'i -West O'ahu</u> – UHWO faculty, staff and students do an informal voluntary recycling of HI-5 aluminum cans and plastic bottles. HI-5 cans and bottles are recycled by the janitorial staff. UHWO also recycled 1,326 pounds of e-waste (computers, monitors, keyboards, etc.) on October 26, 2007. UHWO continue to recycle white and mixed color paper collected in the

mailroom. Paper is recycled at the Community Recycling Center Program bin located at Leeward Community College. UHWO also purchased 4 recyclable plastic picnic tables and 6 recyclable plastic benches for their new E Building lanai. These products are 97% post consumer recycled HDPE (High Density Polyethylene), which qualifies these tables and benches as "green."

<u>Community Colleges</u> – See Appendix 1 for report addressing the individual campuses' efforts to minimize waste and prevent pollution.

#### Act 96 SLH 2006: Buildings and Facilities

- (6) Use life cycle cost-benefit analysis to purchase energy efficient equipment such as Energy Star® products and use utility rebates where available to reduce purchase and installation costs; and
- AG: All staff involved in purchasing equipment have been advised of the Energy Star® program and must document reasons for not purchasing Energy Star®, when available.

B&F: The department will include the use of life cycle cost-benefit analysis where applicable.

DAGS: Mechanical equipment (i.e., a/c, pumps, etc.) have long been required by DAGS to be of the high efficiency type and utility rebates have been used to help offset installation and higher pricing costs for the energy efficient products. DAGS worked with HECO to improve internal procedures to insure utility rebates are not missed. DAGS considers cost/benefit analysis for replacing existing a/c systems with new, more efficient, systems even prior to the existing systems reaching their expected life span. Energy Star® equipment, where available, will be a standard requirement for all construction.

DBEDT: DBEDT conducted or co-sponsored numerous seminars on energy efficiency for state employees and the private sector.

DBEDT continues to advocate Energy Star® Product Promotion and Procurement, which included the following activities:

- Conducting Energy Star® product procurement workshops to promote purchasing of Energy Star® products by State of Hawai'i and local government housing as well as other state, federal agencies, and the territories.
- Providing technical assistance to housing, local government, state and/or federal agency representatives in purchasing Energy Star® products.
- Promoting other training opportunities such as on-line Energy Star® webcasts in areas such as Energy Star® Procurement and Products.
- Providing technical assistance to support labeling three Energy Star® State of Hawai'i buildings.
- Coordinating participation and attendance of various state agency representatives at the training sessions.

DBEDT coordinated the 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center, attended by many from state agencies. Life-cycle cost analysis and Energy Star® products were discussed at length as a means of achieving Hawai'i BuiltGreen<sup>™</sup> 3-Star Level.

Governor Lingle joined the National Energy Star® Change a Light, Change the World Campaign and also proclaimed October 2006 Energy Awareness Month. A similar proclamation has been proposed for the 2008 Change a Light, Change the World Campaign. DBEDT coordinated Hawai'i's observance of the US Department of Energy's Change a Light, Change the World program, including publicizing economic benefits via life-cycle costing.

DBEDT convened the State Facilities Energy Management Advisory Committee (EMAC) in 2007, which made recommendations for increasing the use of energy savings contracts, improving building design, reduction of energy consumption, expanding the use of renewable energy, and procuring energy efficient products.

DBEDT staff spoke to DOT-Harbors' Planning Division about relighting state harbor areas and recommended photovoltaic-powered LED outdoor lamps as a means of reducing electricity use while complying with Homeland Security guidelines. Life cycle costing is included in calculating the avoided cost of not having to trench to bring in new electrical lines.

DBEDT staff helped to stage the International Illuminating Design Awards program. Awardees included two cost-effective lighting projects that reduced electricity consumption by as much as 70% while improving safety and visual acuity.

DBEDT convened the Lead By Example initiative's Environmentally Preferable Purchasing (EPP) working group to brief agency and departmental managers about how 'green purchasing,' including electronic equipment, offers cost, energy, and resource efficiency benefits. DBEDT staff are working with the State Procurement Office to add more EPP products to the procurement list.

DCCA: DCCA purchased Energy Star® products for all available computer equipment, and as applicable will purchase Energy Star® products when replacing office equipment. Life cycle cost-benefit analysis was used to purchase computer equipment such as servers and PCs.

- DHHL: DHHL will promote and design new affordable homes using the Energy Star® program to ensure the best energy and resource efficient homes and facilities.
- DHRD: The department uses the State Procurement Office price/vendor lists for procurement of most of its equipment. Copiers that are leased and computers that are purchased are Energy Star® products.
- DHS: DHS procurement procedures include requirements for purchasing energy efficient products such as Energy Star®, and as applicable will utilize available utility rebates.
- DLIR: DLIR programs are required to purchase Energy Star® products and will continue to check whether utility rebates are available and can be utilized in the purchase of the products as part of the procurement procedure/policy.
- DLNR: DLNR uses life cycle cost-benefit analysis to purchase energy efficient equipment such as Energy Star® products, and uses utility rebates where available to reduce purchase and installation costs.
- DOA: ASO sent a reminder to staff in March and July 2008 of the department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations, including purchasing energy efficient equipment such as Energy Star® products and using utility rebates where available.
- DOE: DOE is encouraging all schools and offices to purchase Energy Star® or any energy efficient alternative equipment that passes life cycle cost-benefit analysis. DOE applies for and receives utility rebates for various energy efficient equipments being installed during construction projects. The total rebates DOE received for equipments installed in 2007 was about \$150,000 with an annual kWh reduction of 1,185,000. DOE will continue to seek utility rebates for on-going project work and seek establishment of utility rebates for new energy efficient technologies.
- DOH: Mechanical and electrical equipment purchases are coordinated by the CIP office. It has been a standard practice to purchase energy efficient items. If any HECO programs are initiated in the future, the department will apply for them. Programs will be instructed to purchase Energy Star® products.
- DOT-Airports: Energy efficiency in equipment is always a major consideration in cooling tower, chiller and other HVAC equipment at all airports. All appliance specifications and purchases are required to be the energy efficient type such as Energy Star® products whenever it is available.
- DOT-Harbors: The division will train staff on life cycle cost analyses and on available Energy Star® technologies. Staff will replace existing equipment with comparable Energy Star® equipment.
- DOT-Highways: The Highways Division continues to install energy efficient traffic signal lamps in new installations or when any traffic signals are modified, and has programmed the replacement of computer equipment with Energy Star® compliant equipment.
- DOTAX: DOTAX uses life cycle costs to evaluate equipment procurements and will use utility rebates where available to reduce purchase and installation costs.
- FTZ: FTZ purchased another Energy Star® copy machine during the last year. FTZ is in the process of purchasing new energy-efficient computers this year.
- HCDA: HCDA has instructed property manager in projects where HCDA is general partner to replace light fixtures, air conditioners, stoves and refrigerators with energy efficient fixtures.
- HHFDC: HHFDC rental projects are required to purchase Energy Star® products whenever applicable. All replacement items, if not Energy Star®, are evaluated for purchase on a cost / efficiency basis. HHFDC is contacting HECO regarding applicable rebate applications.
- HHSC: Hawai'i Health Systems Corporation will incorporate in its procurement process the acquisition of Energy Star® products and other energy saving equipment.
- HSPLS: HSPLS has incorporated life cycle cost benefit analysis through DAGS for new and replacement air conditioning system and equipment. HSPLS has been improving the process in working with HECO to receive the applicable and appropriate rebates for eligible equipment.
- HTA-CC: Currently Energy Star® lighting products have been installed in the exhibition hall, ballroom, administrative areas and fire stairwells. New Energy Star® pumps have been installed on potable cold water system. All five projects have received HECO rebates.
- NELHA: These steps have been taken by NELHA for many years. Recently, in spare staff time, NELHA installed wireless monitoring equipment at three pump stations and staff wrote a complex computer program to enable remote monitoring of the stations' activities. In time, being able to remotely control the operation of the pump stations may result in energy savings for the island through less staff travel to and from NELHA during non-working hours to restore service when a station(s) goes off line due to power interruptions or other causes. Utility rebates have been used whenever available.

- PSD: The department has been challenging DAGS-Division of Public Works and the projects' consultants to plan and design new building operating systems that incorporate the highest provable energy efficiencies. Insofar as utility rebates are concerned, the consultants are reporting that utility rebates have not provided sufficient documented evidence of system efficiencies claimed by manufacturers and, further, that utilities have confirmed that neither they nor independent third parties have verified the accuracy of certain claims by manufacturers of such equipment and/or systems. Accordingly, the department has taken the position of accepting only independently documented efficiency claims and the consultants provide design solutions incorporating this requirement to the manufacturers.
- UH: Systemwide In all new and major renovation projects, a life cycle cost-benefit analysis for mechanical and electrical systems is included in the project basis of design report. Campuses continue to work with the local electric company in their rebate program to purchase energy efficient air conditioning and lighting through the campuses' repair and maintenance programs. Maui CC implemented a campus procurement policy where all purchases of appliances which are rated by the Energy Star® program must have the Energy Star® efficiency rating. The University of Hawai'i will continue to apply the LEED rating system systemwide in all Capital Improvement Program new and major renovation projects.

The University continues to purchase Energy Star® products from the SPO vendor lists for copier and facsimile machines and personal computers and printers.

UH Hilo continues to work with HELCO on energy efficient air conditioning and light fixtures on all renovation and new projects and replacement equipment. UHH has also purchased refrigerators, dehumidifiers and air conditioners (window and portable), that have the Energy Star® labels for efficient operation. In addition, UHH has energy efficient light fixtures and motion sensors to turn off lights when no one's around.

### Act 96 SLH 2006: Buildings and Facilities

- (7) Procure environmentally preferable products, including recycled and recycled-content, bio-based, and other resource-efficient products and materials.
- AG: Recycled paper is required, unless previously approved by the Administrative Services Office. Staff are aware of the policy to utilize environmentally friendly products; however, there is very minimal use of hazardous materials within the department.

B&F: The department currently purchases environmentally preferred products as contained in the SPO price lists.

DAGS: Cleaning products with the Green Seal or equal certification are being integrated into the custodial program. The State Procurement Office (SPO) continues to provide to Executive Departments, other jurisdictions, and the counties, the SPO Price and Vendor List utilizing Energy Star®, recycled, or environmentally preferred products (EPP). Prior to re-solicitation for new contract terms, assessments of current contract specifications and review of market availability are conducted to ensure energy efficient products and supplies are made available through the SPO Price and Vendor lists.

For products and supplies not covered by SPO Price and Vendor list, purchasing agencies are required to utilize the following preferences:

- Recycled Products, HRS 103D-1005
- Biofuel preference, HRS 103D-1012
- Preference for oil products with greater recycled content, HRS Chapter 103D, Part XIII
- DBEDT: DBEDT, through Lead By Example Environmentally Preferable Procurement Working Group meetings, provided information and training to executive agency leadership on state policies and procedures relating to green purchasing. These meetings broadened awareness of purchasing mandates and efficient means of identifying and selecting environmentally preferable products via the state procurement system.

DBEDT, as part of Lead By Example, contracted with Envirospec, Inc., an environmental health and environmentally preferable purchasing consultancy, to initiate a pilot program for testing environmentally preferred alternatives to industrial janitorial chemicals. The three schools selected were McKinley High School, Kapālama Elementary School, and the University of Hawai'i. "Green" cleaning products and vendors were screened and selected based on rigorous criteria and tested in reallife settings for safety, efficacy and other attributes. Preliminary recommendations and a final report were completed in FY08.

DBEDT convened the State Facilities Energy Management Advisory Committee (EMAC) in 2007, which made recommendations for increasing the use of energy savings contracts, improving building design, reduction of energy consumption, expanding the use of renewable energy, and procuring energy efficient products.

DBEDT procured office and copy paper with 35% post-consumer recycled content.

DBEDT provided input into the EPP Survey sent out by DOH and DAGS SPO in August 2008 to assess the FY 2008 environmental purchasing efforts of the state agencies. Results from the DOH and DAGS SPO survey are expected in late 2008.

DBEDT coordinated the 2008 Build & Buy Green Conference & Expo at the Hawai'i Convention Center, attended by many from State agencies. Environmentally preferred purchasing practices, including recycled, bio-based, and other resource-efficient products and materials, were discussed at length as a means of achieving Hawai'i BuiltGreen<sup>™</sup> 3-Star Level.

DBEDT continues to work with the State Departments of Accounting and General Services (DAGS) and Health (DOH), the University of Hawai'i at Mānoa, and other agencies to expand the state's buy-recycled purchasing efforts and examine opportunities to purchase other environmentally-preferable products. DBEDT developed and is working on updating, the following in support of the Environmentally Preferable Purchasing (EPP) - Resources, Outreach, and Technical Assistance Project:

- List of EP Products available in Hawai'i webpage and publication
- Fact Sheets on Federal Executive Orders, Hawai'i Statutes and Resources webpage and publication
- Case Study of Successful EPP Efforts webpage and publication

- Evaluation and Report of present procurement practices and procedures
- Recommendations regarding procedural, specs, bid requests, etc., guidance to address EPP concerns
- Review and follow-up of technical assistance with summary of impact and degree of change in agency procurement practice as a result of the technical assistance

DCCA: DCCA purchased recycled paper products when available on and off bid list.

- DHHL: Where possible, DHHL shall choose environmental friendly products and material and will continue to encourage contractors to use recycled products.
- DHRD: The department purchases environmentally preferable products as contained in the State Procurement Office price/vendor lists. Office paper, paperboard and packaging products are examples of items purchased that are recycled content products.
- DHS: DHS continues to coordinate with the State Procurement Office (SPO) to ensure that price list products satisfy environmentally preferable product requirements.
- DLIR: The DLIR policy mandates the purchase of recycled paper and the utilization of the State Procurement Offices Price List (SPO PL) for all purchases where products are available through the SPO PL. DLIR issued a departmental instructional memo to insure conformance with the results of the EPP Survey.
- DLNR: DLNR encourages the use of recycled products with contractors. DLNR also adheres to the allowed 10% price preference for bids using recycled products in accordance with Section 103D-1005, Hawai'i Revised Statutes.

Kaho'olawe Island Reserve Commission (KIRC): KIRC is in the process of converting all of their paper goods, specifically paper "china," to biodegradable products.

Division of Aquatic Resources (DAR): DAR purchases and uses biodegradable soaps. In particular, DAR uses these products in the Northwest Hawaiian Islands, where there are strict policies on this and any other discharge of durable wastes.

- DOA: ASO sent a reminder to staff in March and July 2008 of the department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations including promoting the 4 Rs – reduce, recycle, reuse and re-buy—and encouraging use of the DBEDT Environmental Product Guide which lists environmentally preferred products.
- DOE: Recycled copier paper is an option for schools to purchase.
- DOH: Presently, the department has not addressed this issue except through state sponsored programs. Programs will be advised to purchase these products, provided they are not mandated to purchase specific items from the statewide Bid List.
- DOT-Airports: The Airports Division purchases their products through the state procurement system, but will consider the "Green Seal" products first.
- DOT-Harbors: The division will implement environmentally preferable procurement. It is using recycled copier paper and will develop program milestones to encourage 100% implementation over a period of time.
- DOT-Highways: Highways Division has been working with industry to find a way to use recycled products in our pavements without losing quality.
- DOTAX: DOTAX coordinates with the State Procurement Office for the purchase of environmentally preferable products including recycled and recycled-content, bio-based, and other resource-efficient products and materials.
- FTZ: All paper products, including copy and bond paper, paper towels and toilet paper, are purchased through the State Bid List and contain the recommended post consumer content.
- HCDA: HCDA has not had occasion to procure such items.
- HHFDC: As stated earlier, it is HHFDC's goal to continue recycling and using recycled paper products. Also it is the agency's goal to use biodegradable cleaning products.
- HHSC: Hawai'i Health Systems Corporation will incorporate in its procurement process the acquisition of environmentally preferable products.

HSPLS: HSPLS continues to explore and include those environmentally preferable products in its supply lists for all libraries.

HTA-CC: The Hawai'i Convention Center continues to mandate that sustainable products be given preference in procurement so as to be environmental friendly at all times. Napkins and box lunch

bags made from recycled material are currently used. Cups, cutlery and clamshell containers are made from bio-compostable material.

NELHA: NELHA purchases recycled content paper products and has done so for many years. NELHA also has looked at refilling its own printer cartridges and/or changing out printers (when current ones are worn out) for models that require less ink. NELHA has cannibalized old computers for RAM and DRAM memory units in order to keep outdated equipment functional and avoid replacement.

NELHA personnel are extremely environmentally conscious and highly motivated to contribute to a better environment. Staff in some departments have asked for 4x10 workdays in order to economize on transportation fuel and reduce carbon emissions on the island.

Staff are encouraged to reuse paper by printing on the back side of previously printed paper for draft reports, etc.

NELHA is looking at purchasing just biodiesel to run its fleet of trucks and electrical generators, although the biodiesel will be quite a bit more expensive in the large quantities NELHA requires. Fortunately, one existing tenant and one prospective tenant intend to produce biodiesel for commercial testing purposes and production and as a result NELHA may in the near future have a source of this environmentally friendly product for use in generators and diesel equipment such as front end loaders, standby truck-mounted generators, and pump station stand-by generation equipment.

PSD: PSD utilizes SPO-generated price lists and vendor lists as required.

UH: LEED (Leadership in Energy & Environmental Design) requirements are included in all new construction projects. The University continues to participate in various SPO price and vendor lists that include recycled products. The University continues to participate in the SPO price list for bulk gasoline and gas credit card services. The University is a participant in the WSCA Industrial Supplies vendor list from which many environmentally preferable products have been purchased. All Invitations for Bids issued by the University of Hawai'i include a Recycled Products Preference (Reference: Section 103D-1005, HRS, and Subchapter 4, Chapter 3-124, HAR). UH Hilo purchases goods made out of post consumer recycled goods as much as practicable. Restroom paper products (toilet paper and hand towels) meet or exceed EPA's guideline for post consumer recycled content.

(1) Comply with Title 10, Code of Federal Regulations, Part 490, Subpart C, "Mandatory State Fleet Program", if applicable;

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

(a) DAGS: Agencies must be in compliance with federal regulations. DAGS AMD has determined it is compliance with the federal requirement by purchasing only new alternative fuel vehicles. Vehicle purchases continue to comply with 10 CFR, Part 490, on alternative fuel E85 vehicles. Covered Fleet Vehicle purchases conducted by SPO continue to comply with 10 CFR, Part 490, on alternative fuel E85 vehicles and Non-Covered Fleet Act 96 Part IV, HRS section 103D-412, Energy Efficient Vehicles.

DBEDT: Does not apply. DBEDT does not have a "covered fleet."

- DCCA: Not applicable; DCCA does not own any vehicles.
- DHHL: DHHL is already in compliance and will continue to comply with Title 10.
- DHRD: Not applicable. The department does not have any transportation vehicles.
- DHS: DHS continues to coordinate with DAGS-Automotive Management Division (AMD) to ensure that vehicle purchases comply with the applicable requirements.
- DLIR: DLIR currently owns two gas engine-operated vehicles and is not required to comply with Title 10, Code of Federal Regulations.
- DLNR: Federal regulations are not currently applicable to DLNR.
- DOA: The department is in compliance with Title 10, Code of Federal Regulations.
- DOE: DOE has organized its fleet program by complex areas and offices. Based on this organization, only the Office of School Facilities and Support Services meets the requirements to be designated as a "covered fleet."
- DOH: The programs are in compliance.
- DOT-Airports: The Airports Division is a covered fleet under the Federal Dept. of Energy Program and is compliant.
- DOT-Harbors: More work needs to be done in this area. The division's attempt to purchase an alternative energy vehicle ran into budget problems as these vehicles cost more than conventionally powered vehicles.
- DOT-Highways: The Highways Division is currently in compliance.
- DOTAX: DOTAX does not have a fleet of thirty vehicles or more.

FTZ: Not applicable; the State of Hawai'i is responsible for developing a "Mandatory State Fleet Program."

- HCDA: HCDA does not maintain fleet of 30+ vehicles.
- HHFDC: Not applicable.
- HHSC: In compliance with Title 10, when purchasing new vehicles through DAGS, energy efficient models (such as hybrids and four cylinder models) will be acquired whenever possible.
- HSPLS: HSPLS has determined that alternative fuel vehicles were either not available or not practical in replacing any library delivery vans. They did not meet the specifications for these heavily used and loaded vehicles.
- HTA-CC: HTA does not maintain a fleet of 30+ vehicles as specified in the above ACT 96 SLH 2006.
- NELHA: NELHA still does not have funding to replace its two ancient diesel trucks. The fleet has been updated (the youngest was a 1995 gasoline-powered truck) with 2005 and 2006 gasoline powered vehicles. However, it should be noted that as an operating entity, NELHA has need of heavy equipment, most of which is not yet even manufactured to meet the above specifications and would, if available, be very cost-prohibitive to purchase.
- PSD: Under the Federal Register, Volume 61, Number 51, page 10631, the activities of State Corrections fall under the excluded "Law Enforcement" vehicle category. While our department's vehicles are exempt from the requirements of Title 10 CFR, Part 490, Subpart C, the PSD has requested that flexible fuel compatible engines be used if available.
- UH: University of Hawai'i Transportation Services is currently in compliance.

(2) Comply with all applicable state laws regarding vehicle purchases;

AG: Not applicable; AG does not purchase vehicles.

B&F: Not applicable to B&F.

DAGS: AMD and SPO review departmental requests to purchase passenger vehicles. HAR Section 3-122-13, Development of specifications and HRS Section 103D-412, Energy-efficient vehicles, provides guidance to state and county purchasing agencies on the purchase and leasing of vehicles. SPO, DAGS-AMD, and DBEDT have developed guidelines for the purchase of vehicles including energyefficient vehicles. These guidelines are available on the DBEDT website at http://hawaii.gov/dbedt/info/energy/efficiency/state/

DBEDT: When available, vehicle procurement instructions will be distributed throughout the department. DCCA: DCCA does not plan on purchasing any vehicles.

- DHHL: DHHL will continue to comply with state laws when purchasing vehicles.
- DHRD: Not applicable. The department does not have any transportation vehicles.
- DHS: DHS continues to coordinate with AMD to ensure that vehicle purchases comply with the applicable requirements.
- DLIR: DLIR owns the following vehicles: 1999 Ford Windstar; 1994 Chevrolet Astrovan. DLIR does not have immediate plans to purchase another vehicle in the near future; however, DLIR will adhere to the applicable state laws regarding vehicle purchases.
- DLNR: DLNR will continue to work with DBEDT in a statewide collaboration on energy efficiency, as a member of DBEDT's Lead by Example Leadership Group. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: The department is in compliance with all applicable state laws.
- DOE: DOE is complying with all state laws regarding vehicle purchases.

DOH: The programs are in compliance.

- DOT-Airports: The Airports Division is compliant under the Federal Program.
- DOT-Harbors: SPO procedures are followed including purchasing using HePS.
- DOT-Highways: The Highways Division is currently in compliance, and all vehicles purchased comply with the State Procurement Office rules.
- DOTAX: DOTAX complies with all applicable state laws regarding vehicle purchases.
- FTZ: No new vehicle purchases are projected for the near future.
- HCDA: HCDA's two vehicles are procured and maintained by DAGS.

HHFDC: Not applicable.

- HHSC: HHSC is in compliance with all state laws regarding vehicle purchases and will continue to comply with all applicable state laws.
- HSPLS: The State Procurement Office (SPO) has revised HAR 3-122-13 to reference Act 96/2006, Part IV as amended in HRS 103D-412 for energy efficiency vehicles. HSPLS will be making all of its vehicle purchases through the SPO to ensure compliance with these state laws and rules.
- HTA-CC: Not applicable. HTA has one vehicle procured and maintained by DAGS; the Hawai'i Convention Center has three vehicles that were procured as part of the outfitting of the building in 1997, registered by the State of Hawai'i and are maintained to the manufacturer's suggested specifications.
- NELHA: All vehicles have been purchased in compliance with state laws. When any operating vehicles are purchased, NELHA always first checks with DAGS, SPO, DBEDT, etc. to ascertain the very latest requirements and procedures that must be used, thus saving personnel time and cost. Further DBEDT procurement procedures are followed in the purchase of vehicles.
- PSD: As applicable to the needs of the department, PSD has solicited for E-85 compatible vehicles. Vehicles purchased for FY08 that were E-85 compatible included four mini-vans, one compact sedan, and two 12-passenger vans. As reported last year, PSD encourages the agency to drive its vehicles safely, and with fuel economy in mind.
- UH: University of Hawai'i Transportation Services is currently in procurement compliance.

(3) Once federal and state vehicle purchase mandates have been satisfied, purchase the most fuel-efficient vehicles that meet the needs of their programs; provided that life cycle cost-benefit analysis of vehicle purchases shall include projected fuel costs;

AG: Not applicable; AG does not have a fleet or purchase fuel.

B&F: Not applicable to B&F.

DAGS: The AMD and SPO review will provide opportunities to comply with the policy to procure the most fuel-efficient vehicles. This review will mandate agencies to be compliant with the law.

DBEDT: When available, vehicle procurement instructions will be distributed throughout the department. DCCA: DCCA does not own any vehicles.

- DHHL: DHHL will continue to consider fuel consumption, capacity and need in addition to price when purchasing new vehicles.
- DHRD: Not applicable. The department does not purchase transportation vehicles at this time.
- DHS: DHS continues to coordinate with AMD and SPO to ensure that vehicle purchases meet fuel efficiency requirements in relation to operational needs.
- DLIR: DLIR's two vehicles are in sound operational condition, and thus DLIR has no plan to replace the vehicles in the near future. Prior to purchasing a vehicle in the future, DLIR will insure that any vehicle purchase satisfies federal and state mandates. In addition, DLIR will purchase the most fuel efficient vehicle that meets the needs of our program.
- DLNR: DLNR will continue to work with DBEDT in a statewide collaboration on energy efficiency, as a member of DBEDT's Lead by Example Leadership Group. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: ASO reminded staff of the department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations, including purchasing the most fuel efficient vehicle that meets the needs of the program once federal and state vehicle purchase mandates have been met.
- DOE: DOE is complying with all state laws regarding vehicle purchases through our Procurement and Contracts Branch.
- DOH: This policy is not in effect. The programs will be advised of this strategy.
- DOT-Airports: The Airports Division doesn't go outside the program; it keeps its purchases under the Federal Program.
- DOT-Harbors: The division needs to do more research and develop an implementation plan.
- DOT-Highways: The Highways Division is currently in compliance.

DOTAX: DOTAX will purchase the most fuel-efficient vehicle that meets the needs of its programs and will include a life cycle cost-benefit analysis, including projected fuel costs, in vehicle procurements. FTZ: Not applicable.

- HCDA: Not applicable; see Item #2 immediately above.
- HHFDC: Not applicable.
- HHSC: HHSC continues to purchase the most fuel efficient vehicles whenever possible.
- HSPLS: HSPLS has been working directly with the SPO to acquire the most fuel-efficient vehicles that meet the needs of our delivery service for all libraries.

HTA-CC: Not applicable: see Item #2, above.

NELHA: See item #1, above. No change from last year in this regard.

- PSD: For most part, the vehicles utilized by the department are heavy-duty vehicles weighing over 8,500 pounds, for which EPA fuel mileage ratings are not available. For those vehicles which are light duty, awards are made on the basis on lowest price. The department is awaiting direction from the Comptroller or SPO with regard to a standardized method of evaluation.
- UH: UH Transportation Services reviews all vehicle purchases for appropriateness. UH Transportation Services keeps historical information on all vehicles assigned to the Transportation Services Fleet. Individual departments keep their own vehicle records pertaining to department owned vehicles. A life cycle cost-benefit analysis has not been done on any vehicles. Vehicle fuel consumption is not tracked. Going forward, the strategy is to develop a web based program to record and compile

individual vehicle data during the current fiscal year. The program must allow departments that own vehicles the ability to enter their program's vehicle data via the web. The web will collect data for analysis to determine life cycle cost-benefit and fuel efficiency; providing historical reference for future purchases.

(4) Purchase alternative fuels and ethanol blended gasoline when available;

AG: Not applicable; AG does not purchase fuel.

B&F: Not applicable to B&F.

- DAGS: SPO Price List No. 07-20, Gas Fueling and Credit Card Services, includes the requirement to establish monthly reports from the vendors of purchases by each cardholder. SPO Price Lists for Bulk Fuel (07-06 O'ahu, 07-05 Hawai'i, 07-03 Maui and 07-04 Kaua'i) are for purchases of ethanol-blended gasoline, E-10 and Ultra Low Sulfur Diesel fuel, by all agencies. The available information will be used to determine total gasoline purchases and expenditures by each purchasing agency.
- DBEDT: DBEDT intends to purchase alternative fuels when available.
- DCCA: DCCA does not own any vehicles.
- DHHL: DHHL intends to purchase alternative fuels and ethanol blended gasoline when available.
- DHRD: Not applicable. The department does not purchase transportation fuels.
- DHS: DHS continues to coordinate with SPO on purchasing alternative fuels from established price lists.
- DLIR: The assessment performed by DLIR indicates that all alternative fuels were purchased from DAGS Automotive Management Division. The DAGS Automotive Management motor pool alternative fuel meets the alternative fuel ethanol blend requirement.
- DLNR: DLNR purchases fuel from vendors as selected by the State Procurement Office in compliance with the Procurement Code. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: ASO reminded staff of the department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations including the purchase of alternative fuels and ethanol blended gasoline when available.
- DOE: For light duty vehicles, only ethanol-blended gasoline is currently available. For diesel fuel vehicles, biodiesel fuel is being considered where practical.
- DOH: This policy is not in effect. The programs will be advised of this strategy.

DOT-Airports: Yes.

- DOT-Harbors: The division will purchase environmentally preferable fuels when available and practical. DOT-Highways: The Highways Division currently purchases propane as an alternative fuel.
- DOTAX: DOTAX purchases ethanol blended gasoline through DAGS' automotive division.
- FTZ: All fuels are purchased from DAGS' automotive division.
- HCDA: HCDA refuels at DAGS' central motor pool.

HHFDC: Not applicable.

- HHSC: All HHSC facilities are using ethanol blended gasoline.
- HSPLS: The State Procurement Price Lists include the purchase of ethanol-blended gasoline and alternative fuels when they are available. Comptroller Memorandum No. 2005-13 dated May 17, 2005 requires all state departments to purchase only regular 87 gasoline unless granted prior approval from DAGS to purchase premium or mid-grade gasoline.

HTA-CC: Not applicable: see Item #2, above.

- NELHA: Ethanol blended gasoline is the only gasoline available on this island. NELHA is looking at purchasing biodiesel from its tenants who will be manufacturing it in the near future in great quantities.
- PSD: Not applicable, currently only E-10 is available in the State of Hawai'i.
- UH: UH Transportation Services does not purchase biodiesel and ethanol blended fuels. An evaluation is currently being undertaken to assess the feasibility of converting to biodiesel fuel and purchasing ethanol blend gasoline. If feasible, conversion to these fuels during the current fiscal year is desired.

Fleet use of biodiesel (gallons purchased) and total cost (\$):

AG: Not applicable; AG does not purchase fuel. B&F: Not applicable to B&F. DAGS: None. DBEDT: Not applicable. DCCA: DCCA does not own any vehicles. DHHL: No vehicles used biodiesel.

DHRD: Not applicable. The department does not purchase transportation fuels.

DHS: Zero.

DLIR: Not applicable; no diesel fuel used.

DLNR: Not applicable. DLNR purchased 150 gallons of biodiesel, but it was used for invasive species control and not vehicle fuel.

DOA: No biodiesel was purchased in FY08.

DOE: Biodiesel is not available due to state fuel pricelist. Also, limited locations for biodiesel purchasing make it very difficult to establish a purchasing program.

DOH: Zero.

DOT-Airports: The Airports Division does not have a separate tank for storage. No biodiesel.

DOT-Harbors: None. The State Procurement Office Price List for "Bulk Deliveries for Gasoline and Diesel" only has diesel fuel #2.

DOT-Highways: The Highways Division has not purchased any biodiesel.

DOTAX: Not applicable; DOTAX does not purchase diesel fuel.

FTZ: Not applicable.

HCDA: Not applicable.

HHFDC: Not applicable.

HHSC: None.

HSPLS: \$0.

HTA-CC: Not applicable.

NELHA: Zero.

PSD: No biodiesel fuel was purchased for the last fiscal year.

UH: None.

(5) Evaluate a purchase preference for biodiesel blends, as applicable to agencies with diesel fuel purchases;

Not applicable. Superseded by Act 240 of 2006, which established a 5¢ gallon preference for biodiesel. DAGS SPO and DBEDT's Strategic Industries Division are reviewing and drafting Hawai'i Administrative Rules to implement the preference provided in Act 240/SLH 2006 on the requirement of biofuel.

(6) Promote efficient operation of vehicles;

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

- DAGS: DAGS provides guidelines in the general operation of vehicles including a compressive Preventive Maintenance (PM) Schedule for its vehicles. DAGS Motor pool offers PM services to all state vehicles under 8500 GVW.
- DBEDT: Tips for efficient operation of vehicles will be distributed department-wide.
- DCCA: DCCA does not own any vehicles.
- DHHL: Driving and maintenance tips have been attached to each vehicle mileage log.
- DHRD: Not applicable. The department does not have any transportation vehicles.
- DHS: DHS continues to coordinate with AMD in the issuance of vehicle operation procedures.
- DLIR: DLIR vehicles are serviced by DAGS Automotive Management Division Motor Pool on a regular basis. Both of the DLIR vehicles are in sound condition and they operate at maximum efficiency. The vehicles' operational efficiency can be certified and recertified by the DAGS Automotive Management Division.
- DLNR: DLNR encourages maintenance and regular service of vehicles. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: ASO reminded staff of department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations including tips on efficient operation of vehicles.

DOE: No formal programs have been developed by DOE.

DOH: This policy is not in effect. The programs will be advised.

DOT-Airports: Yes.

DOT-Harbors: Need to do more research and develop implementation plan.

DOT-Highways: Highways Division is currently in compliance with both federal and state laws.

DOTAX: DOTAX will promote efficient operation of vehicles through an educational campaign.

FTZ: FTZ does not have a formal program, but follows the state plan for efficient use of vehicles.

HCDA: HCDA encourages staff to walk to properties/appointments whenever possible.

HHFDC: Not applicable.

- HHSC: HHSC facilities perform required maintenance of vehicles conforming to manufacturer's recommendations.
- HSPLS: HSPLS has guidelines for the general operation and efficient use of all our motor vehicles. We follow the manufacturer's recommended maintenance and servicing schedules for all vehicles. We provide information to all drivers on improving mileage and safety.
- HTA-CC: HTA encourages car pooling when using a State of Hawai'i vehicle and HCC specifically logs all trips and mileage using its three assigned vehicles.
- NELHA: One of the strategies utilized is having employees use their own vehicles for travel around NELHA, into town and back on business, and so forth. This eliminates the use of state vehicles and saves money as most employees are not willing to fill out the necessary paperwork to get reimbursement for their travels.

When it comes to work vehicular use, the use of solar powered golf carts is encouraged whenever possible. Use of trucks is encouraged only when long trips to Gateway or the 55" pump station are required or heavy equipment parts need to be transported. The solar-powered golf carts are not adequate for these types of trips. When trucks are used, NELHA asks that as many people fit into the cab of the truck as can be accommodated by existing seatbelts, thus saving on multiple vehicular usage to the greatest extent possible. One good practice is to put notices on the driver's side dash board: "Is this trip necessary?"

- PSD: IOM No. 2006-2711, dated August 16, 2006, distributed FTC's "Good, Better, Best: How to Improve Gas Mileage" to department's divisions, programs and agencies.
- UH: Information regarding the efficient operation of vehicles is currently not distributed. UH plans to develop information brochures and distribute to vehicle operators during the current fiscal year.

(7) Use the most appropriate minimum octane fuel; provided that vehicles shall use 87-octane fuel unless the owner's manual for the vehicle states otherwise or the engine experiences knocking or pinging;

AG: Not applicable; AG does not purchase fuel.

B&F: Not applicable to B&F.

DAGS: DAGS mandates that all vehicles operate on 87 octane fuel unless exempted by the Comptroller's Office. The department will continue to monitor fuel purchases of all agencies.

DBEDT: This instruction will be distributed department-wide.

DCCA: DCCA does not own any vehicles.

DHHL: DHHL will continue to use the most appropriate minimum octane fuels for its vehicles.

DHRD: Not applicable. The department does not have any transportation vehicles.

DHS: DHS continues the implementation of the present policy requiring the use of 87 octane fuel.

- DLIR: DLIR vehicles are refueled at the DAGS Automotive Management Division Motor Pool. Neither DLIR vehicle has experienced problems with knocking or pinging.
- DLNR: DLNR is in compliance with State Procurement Office bid list rules as stated above. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: ASO reminded staff of department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with the goal of minimizing energy, fuel and water consumption and implementing resource-efficient operations including using the 87 octane fuel unless the owner's manual for the vehicle states otherwise or the engine experiences knocking or pinging.

DOE: DOE has instructed all offices to follow this standard.

DOH: The programs are mandated to purchase specific octane fuel from Tesoro, which has a contract with the State.

DOT-Airports: Yes.

DOT-Harbors: The division will purchase environmentally preferable fuels when available and practical.

- DOT-Highways: Oʻahu, Maui and Kauaʻi are currently using 87-octane fuel. Hawaiʻi will switch to 87octane fuel in 2009.
- DOTAX: DOTAX uses the most appropriate minimum octane fuel, provided that vehicles shall use 87octane fuel unless the owner's manual for the vehicle states otherwise or the engine experiences knocking and pinging.
- FTZ: Fuels are purchased from DAGS automotive division.
- HCDA: HCDA complies by refueling at DAGS' central motor pool.

HHFDC: Not applicable.

HHSC: Under the State Contract, all our vehicles are filled with 87 octane, 10% ethanol blended gasoline.

HSPLS: The State Procurement Price Lists include the purchase of ethanol-blended gasoline and alternative fuels when they are available. Comptroller Memorandum No. 2005-13 dated May 17, 2005 requires all State departments to purchase only regular 87 gasoline unless granted prior approval from DAGS to purchase premium or mid-grade gasoline.

HTA-CC: Both HTA and HCC comply with the above requirement.

NELHA: No vehicles require higher than 87 octane gasoline or 45 cetane diesel fuel. None of NELHA's diesel trucks can pass vehicle safety checks so are not authorized for use on state or county roads. NELHA's diesel electric generators are stationary units, which with the off-highway trucks mean

NELHA purchases off-road diesel, saving a considerable sum as a result.

PSD: PSD follows the Comptroller's Memo 2005-13 on the use of regular grade gasoline.

UH: UH Transportation Services is in compliance.

- (8) Beginning with fiscal year **2005-2006** as the baseline, collect and maintain, for the life of each vehicle acquired, the following data:
  - (A) Vehicle acquisition cost;

AG: Not applicable; AG does not purchase vehicles.

- B&F: Not applicable to B&F.
- DAGS: DAGS tracks this information for all its vehicles and will continue to keep accurate records.
- DBEDT: Data will be collected if vehicles are acquired.
- DCCA: DCCA does not own any vehicles.
- DHHL: See Appendix 2.
- DHRD: Not applicable. The department does not have any transportation vehicles.
- DHS: DHS maintains the vehicle acquisition cost in the fixed asset inventory system.
- DLIR: 1999 Ford Windstar acquired on 1-23-01 for \$17,500.00; 1994 Chevrolet Astrovan acquired on 5-3-01 for \$5,900.00.
- DLNR: DLNR has a department-wide database that captures vehicle acquisition cost and is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. Additionally, DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: The department continued to record vehicle acquisition cost for all new and existing vehicles in its Automotive Management System.
- DOE: DOE has developed a database system (Maximo) to capture these data and is in the process of implementing and training users to input the data. See Appendix 3.
- DOH: These data are not available in one central file. Each program maintains its own records. Presently the Department has over 40 programs at 80 facilities throughout the State. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.
- DOT-Airports: See Appendix 4. Also, the Airports Division has a contract in progress for fuel pump replacement and an online program to further gather this information through computer program tracking.
- DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006.

FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future.

HCDA: Not applicable; maintained by DAGS.

HHFDC: Not applicable.

- HHSC: Lē'ahi Hospital
  - FY 07 2001 Dodge Stratus \$5,200 2001 Dodge Stratus - \$5,000
  - FY 08 2004 Chevy Malibu \$8,200 2001 Dodge Caravan - \$4,500

#### **Hilo Medical Center**

- FY 07 2002 Oldsmobile Alero \$6,883 2002 Oldsmobile Alero - \$6,883 2002 Oldsmobile Alero - \$6,883
- FY 08 2001 Dodge Stratus \$4,992 2002 Oldsmobile Alero - \$5,192 2002 Dodge Intrepid - \$6,392 2003 Oldsmobile Alero - \$6,205

#### Maui Memorial Medical Center

FY 06 2002 Oldsmobile Alero - \$5,000 2003 Oldsmobile Alero - \$5,000 1998 Chevy Van - \$4,500

- FY 07 2007 Ford E450 van \$24,730
- FY 08 2003 Oldsmobile Alero \$5,500 2003 Oldsmobile Alero - \$5,500 2002 Oldsmobile Alero - \$5,000 2001 Chevy S-10 Pickup - \$4,700 2000 Ford 150 - \$6,000

HSPLS: HSPLS has this information included as part of its inventory of all fixed assets and equipment. HTA-CC: HTA complies.

NELHA: 2005 Chevrolet <sup>3</sup>/<sub>4</sub> ton pickup: \$20,390.00; 2006 Chevrolet <sup>3</sup>/<sub>4</sub> ton pickup: \$22.245.00.

PSD: See Appendix 7 for FY 08 vehicle acquisition costs.

UH: This information is recorded on department hard copy files. The UH plans to convert hard copy data to computer file form during the current fiscal year to facilitate data analysis.

#### (B) United States Environmental Protection Agency rated fuel economy;

AG: Not applicable; AG does not have vehicles.

B&F: Not applicable to B&F.

DAGS: DAGS has this information on file for its vehicles and will continue to keep accurate records.

DBEDT: Data will be collected if vehicles are acquired.

DCCA: DCCA does not own any vehicles.

DHHL: See Appendix 2.

DHRD: Not applicable. The department does not have any transportation vehicles.

DHS: DHS continues to coordinate the issuance of applicable requirements with SPO.

DLIR: 1999 Ford Windstar: 17 mpg City and 23 mpg Highway; 1994 Chevrolet Astrovan: 17 mpg City and 22 mpg Highway.

DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DOA: DOA continued to compare actual mileage with U.S. EPA fuel economy rating for all new and existing vehicles in the department's Automotive Management System.

- DOE: DOE has developed a database system (Maximo) to capture these data and is in the process of implementing and training users to input the data. See Appendix 3.
- DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6.

DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006.

FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future.

HCDA: Not applicable; maintained by DAGS.

HHFDC: Not applicable.

### HHSC: Lē'ahi Hospital

2001 Dodge Stratus – 20 to 28 MPG 2001 Dodge Stratus – 20 to 28 MPG

2004 Chevy Malibu – 22 to 30 MPG

2001 Dodge Caravan – 16 to 23 MPG

Hilo Medical Center

2002 Oldsmobile Alero - 21 to 32 MPG

2002 Oldsmobile Alero - 21 to 32 MPG

2002 Oldsmobile Alero - 21 to 32 MPG

2001 Dodge Stratus - 20 to 28 MPG

2002 Oldsmobile Alero - 21 to 32 MPG

2002 Dodge Intrepid - 18 to 26 MPG

2003 Oldsmobile Alero - 20 to 29 MPG **Maui Memorial Medical Center** 2002 Oldsmobile Alero - 21 to 32 MPG 2003 Oldsmobile Alero - 21 to 32 MPG 1998 Chevy Van - 12 to 16 MPG 2007 Ford E450 van - 16 to 23 MPG 2003 Oldsmobile Alero - 21 to 32 MPG 2003 Oldsmobile Alero - 21 to 32 MPG 2002 Oldsmobile Alero - 21 to 32 MPG 2001 Chevy S-10 Pickup - 18 to 26 MPG 2000 Ford 150 - 12 to 16 MPG

HSPLS: This information is included with each vehicle at the time of acquisition from the dealers or manufacturers.

HTA-CC: HTA complies.

NELHA: See Appendix 8, "NELHA Vehicle Inventory and Fuel Economy."

PSD: EPA fuel efficiency data are available for light duty vehicles only (< 8500 lbs GVWR).

UH: This information is not recorded in department files. UH will conduct research and record information on departments' records in computer file form during the current fiscal year.

(C) Vehicle fuel configuration, such as gasoline, diesel, flex-fuel gasoline/E85, and dedicated propane;

AG: Not applicable; AG does not have vehicles.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Data will be collected if vehicles are acquired.

DCCA: DCCA does not own any vehicles.

DHHL: See Appendix 2.

DHRD: Not applicable. The department does not have any transportation vehicles.

DHS: DHS continues to coordinate the issuance of applicable requirements with AMD.

DLIR: 1999 Ford Windstar - Gasoline/E85; 1994 Chevrolet Astrovan - Gasoline/E85.

DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DOA: DOA continued to maintain fuel configuration for all new and existing vehicles in the department's Automotive Management System.

DOE: DOE has developed a database system (Maximo) to capture these data and is in the process of implementing and training users to input the data. See Appendix 3.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the Department has over 40 programs at 80 facilities throughout the State. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006.

FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future.

HCDA: Not applicable; maintained by DAGS.

HHFDC: Not applicable.

HHSC: Gasoline is the fuel used for all vehicles.

HSPLS: This information is included with each vehicle at the time of acquisition from the dealers or manufacturers.

HTA-CC: HTA complies.

NELHA: See Appendix 8,, "NELHA Vehicle Inventory and Fuel Economy."

PSD: See Appendix 7. Where vehicles are indicated with N/A, the programs did not provide the data.
UH: This information is recorded on department hard copy files. The UH plans to convert hard copy data to computer file form during the current fiscal year to facilitate data analysis.

(D) Actual in-use vehicle mileage;

AG: Not applicable; AG does not have vehicles. B&F: Not applicable to B&F. DAGS: DAGS has this information for each vehicle and will continue to track the data. DBEDT: Data will be collected if vehicles are acquired. DCCA: DCCA does not own any vehicles. DHHL: See Appendix 2. DHRD: Not applicable. The department does not have any transportation vehicles. DHS: DHS continues to coordinate with AMD on the issuance of uniform procedures DLIR: July 1, 2005 to June 30, 2006 1999 Ford Windstar - 2096.1 Miles 1994 Chevrolet Astrovan - 248.0 Miles July 1, 2006 to June 30, 2007 1999 Ford Windstar - 1616.6 Miles 1994 Chevrolet Astrovan - 166.3 Miles July 1, 2007 to June 30, 2008 1999 Ford Windstar - 1541.70 Miles 1994 Chevrolet Astrovan - 148.40 Miles DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate. DOA: DOA continued to record in-use vehicle mileage for all new and existing vehicles in the department's Automotive Management System. The department continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. DOA continued to maintain vehicle refueling logs for programs that have vehicles which refuel at places other than DAGS, Tesoro and Hawai'i Petroleum. It also continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3. DOH: These data are not available in one central file. Each program maintains its own records. Presently the Department has over 40 programs at 80 facilities throughout the State. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible. DOT-Airports: See Appendix 4. DOT-Harbors: See Appendix 5. DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006. FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future. HCDA: HCDA complies. HHFDC: Not applicable.

# HHSC: Lē'ahi Hospital

2001 Dodge Stratus 4,249 miles 2001 Dodge Stratus 4,074 miles 2004 Chevy Malibu 992 miles 2001 Dodge Caravan 618 miles Hilo Medical Center 2002 Oldsmobile Alero 18,845 miles 2002 Oldsmobile Alero 18,884 miles 2002 Oldsmobile Alero 19,649 miles

- 2001 Dodge Stratus 9,135 miles 2002 Oldsmobile Alero 8,550 miles 2003 Oldsmobile Alero 3,725 miles 2003 Oldsmobile Alero 3,725 miles **Maui Memorial Medical Center** 2002 Oldsmobile Alero - 23,041 miles 2003 Oldsmobile Alero - 93,447 miles 2003 Oldsmobile Alero - 93,447 miles 2007 Ford E450 van - 18,499 miles 2003 Oldsmobile Alero - 8,314 miles 2003 Oldsmobile Alero - 5,784 miles 2002 Oldsmobile Alero - 17,504 miles 2001 Chevy S-10 Pickup - 27,647 miles 2000 Ford 150 - 10,779 miles
- HSPLS: 152,068 total miles.
- HTA-CC: HTA complies.

NELHA: See Appendix 8, "NELHA Vehicle Inventory and Fuel Economy."

- PSD: See Appendix 7. Where vehicles are indicated with N/A, the programs did not provide the data.
- UH: This information is recorded on department hard copy files. The UH plans to convert hard copy data to computer file form during the current fiscal year to facilitate data analysis.
  - (E) Actual in-use vehicle fuel consumption; and

AG: Not applicable; AG does not have vehicles.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Data will be collected if vehicles are acquired.

DCCA: DCCA does not own any vehicles.

DHHL: See Appendix 2.

- DHRD: Not applicable. The department does not have any transportation vehicles.
- DHS: DHS continues to coordinate with AMD on the issuance of applicable procedures.
- DLIR: July 1, 2005 to June 30, 2006

1999 Ford Windstar – 226.7 Gallons

1994 Chevrolet Astrovan - 21.7 Gallons

July 1, 2006 to June 30, 2007

1999 Ford Windstar – 176.4 Gallons

1994 Chevrolet Astrovan - 20.6 Gallons

July 1, 2007 to June 30, 2008

1999 Ford Windstar – 169.00 Gallons

1994 Chevrolet Astrovan – 20.8 Gallons

- DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: DOA continued to record in-use vehicle fuel consumption for all vehicles in the department's Automotive Management System. It also continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. The department continued to maintain vehicle refueling logs for programs that have vehicles which refuel at places other than DAGS, Tesoro and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division and Hawai'i Petroleum for FY08.

DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: See Appendix 4..

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006.

FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future.

HCDA: Not applicable; part of central motor pool data.

HHFDC: Not applicable.

## HHSC: Lē'ahi Hospital

2001 Dodge Stratus - 193 gallons 2001 Dodge Stratus - 194 gallons 2004 Chevy Malibu – 41 gallons 2001 Dodge Caravan - 34 gallons **Hilo Medical Center** 2002 Oldsmobile Alero - 723 gallons 2002 Oldsmobile Alero - 739 gallons 2002 Oldsmobile Alero - 662 gallons 2001 Dodge Stratus - 330 gallons 2002 Oldsmobile Alero - 361 gallons 2002 Dodge Intrepid - 417 gallons 2003 Oldsmobile Alero – 128 gallons Maui Memorial Medical Center 2002 Oldsmobile Alero – 1,280 gallons 2003 Oldsmobile Alero – 4,450 gallons 1998 Chevy Van - 1,842 gallons 2007 Ford E450 van - 1.028 gallons 2003 Oldsmobile Alero – 396 gallons 2003 Oldsmobile Alero – 275 gallons 2002 Oldsmobile Alero – 972 gallons 2001 Chevy S-10 Pickup - 1,455 gallons 2000 Ford 150 - 898 gallons

HSPLS: 10,490.37 gallons.

HTA-CC: HTA complies.

NELHA: See Appendix 8, "NELHA Vehicle Inventory and Fuel Economy."

PSD: FY08 information is See Appendix 7. Where vehicles are indicated with N/A, the programs did not provide the data.

UH: This information is not recorded in department files. The UH will begin vehicle fuel usage data collection in computer file form during the current fiscal year to facilitate data analysis.

#### (F) Actual in-use annual average vehicle fuel economy;

AG: Not applicable; AG does not have vehicles.
B&F: Not applicable to B&F.
DAGS: DAGS has this information for each vehicle and will continue to track the data.
DBEDT: Data will be collected if vehicles are acquired.
DCCA: DCCA does not own any vehicles.
DHHL: See Appendix 2.
DHRD: Not applicable. The department does not have any transportation vehicles.
DHS: DHS continues to coordinate with AMD on issuing applicable procedures.
DLIR: July 1, 2005 to June 30, 2006

1999 Ford Windstar – 9.25 Miles Per Gallon
July 1, 2006 to June 30, 2007
1999 Ford Windstar – 9.16 Miles Per Gallon

1994 Chevrolet Astrovan - 8.07 Miles Per Gallon

A decrease of 3.36 miles per gallon resulted from mechanical problems with the vehicle. The mechanical problems reduced the vehicle total miles driven in FY07 by a total of 81.7 miles (248 miles in FY06 to 166.3 in FY07), a 33 percent reduction. The inability to drive the vehicle accounts for decrease in the miles per gallon of 33 percent. The mechanical problems which prohibited the use of vehicle has been repaired by the DAGS Automotive Division.

July 1, 2007 to June 30, 2008

1999 Ford Windstar - 9.12 Miles Per Gallon

1994 Chevrolet Astrovan - 8.87 Miles Per Gallon

- DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: DOA is calculating FY08 annual average vehicle fuel economy for each vehicle. Once completed, information will be distributed to program managers for their review and information.
- DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3.
- DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: DOTAX will comply for each vehicle acquired beginning fiscal year 2005-2006.

FTZ: No vehicle was purchased in FY 2005-2006 and there is no intent to purchase any vehicle in the foreseeable future.

HCDA: Not applicable; part of central motor pool data.

# HHFDC: Not applicable.

#### HHSC: Lē'ahi Hospital

2001 Dodge Stratus – 22 mpg 2001 Dodge Stratus – 21 mpg 2004 Chevy Malibu – 24 mpg 2001 Dodge Caravan – 18 mpg **Hilo Medical Center** 2002 Oldsmobile Alero – 26 mpg 2002 Oldsmobile Alero – 25 mpg 2002 Oldsmobile Alero – 29 mpg 2001 Dodge Stratus – 27 mpg 2002 Oldsmobile Alero – 23 mpg 2002 Dodge Intrepid – 25 mpg 2003 Oldsmobile Alero – 29 mpg **Maui Memorial Medical Center** 2002 Oldsmobile Alero – 18 mpg 2003 Oldsmobile Alero – 21 mpg 1998 Chevy Van – 12 mpg 2007 Ford E450 van - 18 mpg 2003 Oldsmobile Alero – 21 mpg 2003 Oldsmobile Alero – 21 mpg 2002 Oldsmobile Alero – 18 mpg 2001 Chevy S-10 Pickup - 19 mpg 2000 Ford 150 – 12 mpg

HSPLS: 14.5 miles per gallon. HTA-CC: HTA complies.

NELHA: See Appendix 8, "NELHA Vehicle Inventory and Fuel Economy."

PSD: See Appendix 7.

UH: This information is not recorded in department files. The UH will facilitate data analysis during the current fiscal year.

# Act 96 SLH 2006: Transportation Vehicles and Fuel

- (9) Beginning with **fiscal year 2005-2006** as the baseline with respect to each agency that operates a fleet of thirty or more vehicles, collect and maintain, in addition to the data in paragraph (8), the following:
  - (A) Information on the vehicles in the fleet, including vehicle year, make, model, gross vehicle weight rating, and vehicle fuel configuration;

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Does not apply. DBEDT does not operate 30 or more vehicles.

DCCA: DCCA does not own any vehicles.

DHHL: DHHL does not operate a fleet of 30+ vehicles.

DHRD: Not applicable. The department does not operate a fleet of vehicles.

DHS: As applicable, DHS will coordinate the issuance of procedures with AMD.

DLIR: DLIR only owns two light-duty vehicles and these questions are not applicable.

- DLNR: DLNR continues to gather the required information on its vehicle fleet. DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.
- DOA: DOA continued to maintain information on vehicle year, make, model, gross vehicle weight rating, and vehicle fuel configuration for all new and existing vehicles in the department's Automotive Management System.

DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: All this information is under the new contract in progress issued by Airport Division Engineering Facilities Maintenance Section. See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6.

DOTAX: Not applicable; DOTAX does not have a fleet of thirty vehicles or more.

FTZ: Not applicable; FTZ does not operate a fleet of thirty or more vehicles.

HCDA: HCDA does not maintain fleet of 30+ vehicles.

HHFDC: Not applicable.

HHSC: None of the hospitals operates a fleet of thirty or more vehicles.

HSPLS: Not applicable; HSPLS does not operate a fleet of more than 30 vehicles.

HTA-CC: Not applicable.

NELHA: Not applicable; NELHA does not operate a fleet of thirty or more vehicles.

PSD: See Appendix 7.. The following classification was used to determine the gross vehicle weight rating (GVWR):

| VEHICLE CLASSIFICATION | WEIGHT              |
|------------------------|---------------------|
| Class 1                | 0 - 6,000 lbs       |
| Class 2                | 6,001 - 10,000 lbs  |
| Class 3                | 10,001 - 14000 lbs  |
| Class 4                | 14,001 - 16,000 lbs |
| Class 5                | 16,001 - 19,500 lbs |
| Class 6                | 19,501 - 26,000 lbs |
| Class 7                | 26,001 - 33,000 lbs |
| Class 8                | 33,001 lbs and over |

UH: This information is recorded on department hard copy files. UH will convert hard copy data to computer files during the current fiscal year to facilitate data analysis.

## (B) Fleet fuel usage, by fuel;

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Does not apply. DBEDT does not operate 30 or more vehicles.

DCCA: DCCA does not own any vehicles.

DHHL: DHHL does not operate a fleet of 30+ vehicles.

DHRD: Not applicable. The department does not operate a fleet of vehicles.

DHS: As applicable, DHS will coordinate the issuance of procedures with AMD.

DLIR: DLIR only owns two light-duty vehicles and these questions are not applicable.

DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DOA: DOA continued to record in-use vehicle fuel consumption for all vehicles in the department's Automotive Management System. It also continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. The department continued to use vehicle refueling logs for programs that have vehicles which refuel at places other than DAGS, Tesoro and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. Once completed, information will be distributed to program managers for their review and information. See Appendix 3.

DOE: DOE is in the process of implementing and training users to input the data.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: All under the new contract in progress issued by Airport Division Engineering Facilities Maintenance Section. See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: Not applicable; DOTAX does not have a fleet of thirty vehicles or more.

FTZ: Not applicable; FTZ does not operate a fleet of thirty or more vehicles.

HCDA: HCDA does not maintain a fleet of 30+ vehicles.

HHFDC: Not applicable.

HHSC: None of the hospitals operates a fleet of thirty or more vehicles.

HSPLS: Not applicable; HSPLS does not operate a fleet of more than 30 vehicles.

HTA-CC: Not applicable.

NELHA: Not applicable; NELHA does not operate a fleet of thirty or more vehicles.

PSD: The following defines how much each program spent for fuel during the past fiscal year.

| PROGRAM | COST OF FUEL |
|---------|--------------|
| Kulani  | \$54,032.34  |
| НССС    | \$45,368.46  |
| MCCC    | \$16,769.35  |

| 0000           | \$46,588.84  |
|----------------|--------------|
| WCCC           | \$12,859.99  |
| Intake Service | \$1,846.84   |
| Sheriff        | \$136,561.96 |
| Admin          | \$12,251.92  |
| HCF            | \$23,387.73  |
| WCF            | \$8,537.72   |
| KCCC           | \$8,014.14   |
| CPS            | \$15,482.69  |
| Health care    | \$1,109.21   |
| NED            | \$19,005.95  |
| НРА            | none         |

UH: This information is not recorded on department hard copy files. UH will begin recording fleet fuel usage by fuel during the current fiscal year.

#### (C) Fleet mileage; and

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Does not apply. DBEDT does not operate 30 or more vehicles.

DCCA: DCCA does not own any vehicles.

DHHL: DHHL does not operate a fleet of 30+ vehicles.

DHRD: Not applicable. The department does not operate a fleet of vehicles.

DHS: As applicable, DHS will coordinate the issuance of procedures with AMD.

DLIR: DLIR only owns two light-duty vehicles and these questions are not applicable.

DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DOA: DOA continued to record in-use vehicle mileage for all new and existing vehicles in the department's Automotive Management System. It also continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. The department continued to maintain vehicle refueling logs for programs that have vehicles which refuel at places other than DAGS, Tesoro and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum. DOA continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. Once completed, information will be distributed to program managers for their review and information.

DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information requested in items A thru F. This database should be web accessible.

DOT-Airports: All this information is under the new contract in progress, issued by Airport Division Engineering Facilities Maintenance Section. See Appendix 4.

DOT-Harbors See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: Not applicable; DOTAX does not have a fleet of thirty vehicles or more.

FTZ: Not applicable; FTZ does not operate a fleet of thirty or more vehicles.

HCDA: HCDA does not maintain a fleet of 30+ vehicles.

HHFDC: Not applicable.

HHSC: None of the hospitals operates a fleet of thirty or more vehicles.

HSPLS: Not applicable; HSPLS does not operate a fleet of more than 30 vehicles.

HTA-CC: Not applicable.

NELHA: Not applicable; NELHA does not operate a fleet of thirty or more vehicles.

PSD: See Appendix 7. Where vehicles are indicated with N/A, the programs did not provide the data.

UH: This information is recorded on department hard copy files. UH will compile and record data on computer file during current fiscal year.

(D) Overall annual average fleet fuel economy and average miles per gallon of gasoline and diesel.

AG: Not applicable; AG does not have a fleet.

B&F: Not applicable to B&F.

DAGS: DAGS has this information for each vehicle and will continue to track the data.

DBEDT: Does not apply. DBEDT does not operate 30 or more vehicles.

DCCA: DCCA does not own any vehicles.

DHHL: DHHL does not operate a fleet of 30+ vehicles.

DHRD: Not applicable. The department does not operate a fleet of vehicles.

DHS: As applicable, DHS will coordinate the issuance of procedures with AMD.

DLIR: DLIR only owns two light-duty vehicles and these questions are not applicable.

DLNR: DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. DLNR continues to seek the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DOA: DOA is calculating FY08 annual average vehicle fuel economy for each vehicle. Once completed, the information will be distributed to program managers for their review and information.

DOE: DOE is in the process of implementing and training users to input the data. See Appendix 3.

DOH: These data are not available in one central file. Each program maintains its own records. Presently the department has over 40 programs at 80 facilities throughout the state. A database must be created for the individual programs to input the information.

DOT-Airports: All this information is under the new contract in progress, issued by Airport Division Engineering Facilities Maintenance Section. See Appendix 4.

DOT-Harbors: See Appendix 5.

DOT-Highways: The Highways Division is currently in the process of gathering data. See Appendix 6. DOTAX: Not applicable; DOTAX does not have a fleet of thirty vehicles or more.

FTZ: Not applicable; FTZ does not operate a fleet of thirty or more vehicles.

HCDA: HCDA does not maintain fleet of 30+ vehicles.

HHFDC: Not applicable.

HHSC: None of the hospitals operates a fleet of thirty or more vehicles.

HSPLS: Not applicable; HSPLS does not operate a fleet of more than 30 vehicles.

HTA-CC: Not applicable.

NELHA: Not applicable; NELHA does not operate a fleet of thirty or more vehicles.

PSD: See Appendix 7. City MPG and highway MPG were accumulated based on the vehicle type and the GVWR.

Article II. UH: This information is not recorded in department files. UH will begin data analysis to determine fleet fuel economy during the current fiscal year.

# **Renewable Energy and Resource Development**

All affected agencies and programs are directed to review internal policies, rules, and practices regarding permitting requirements affecting renewable energy development. To the extent possible, permitting policies and practices should be streamlined to expedite implementation of renewable energy projects. It is requested that agencies prepare a report to my office identifying the specific steps they have taken to expedite the approval of renewable energy projects.

DBEDT: DBEDT prepared a report outlining potential models for permit facilitation and streamlining as implemented by other states, in response to SCR 164 of the 2007 session of the Hawai'i State Legislature. The report is available on DBEDT's energy website.

During the 2008 session of the Hawai'i State Legislature, two bills were passed that help to expedite the permitting of renewable energy projects in Hawai'i. HB 2863 and HB 2505 were passed in FY 2008, and signed on July 1, 2008 as Act 207 and Act 208 respectively.

Act 207 establishes new responsibilities for the Director of DBEDT as the state's Energy Resources Coordinator. The Coordinator will create a streamlined permitting process that includes state and county permits required for the siting, development, construction, and operation of a new renewable energy facility of at least 200 megawatts capacity. The bill requires the Coordinator to hold a public meeting on the island where the project will be located to promote awareness and encourage public input.

Act 208 establishes a full-time renewable energy facilitator position in DBEDT. The facilitator will report to the Energy Resources Coordinator. The facilitator's duties will include facilitating existing permits, proposing changes to the permit process and coordinating energy projects.

DLNR: DLNR continues to review internal policies, rules, and practices regarding permitting requirements affecting renewable energy development. To the extent possible, DLNR streamlines permitting policies and practices to expedite implementation of renewable energy projects. Two of these permitting processes are detailed below.

**DLNR issuance of Conservation District Use Permits:** The Office of Conservation and Coastal Lands (OCCL) oversees activities within the Conservation District. OCCL rules state that "energy generation facilities utilizing the renewable resources of the area (e.g. hydroelectric or wind farms)...and other such land uses which are undertaken by non-governmental entities which benefit the public and are consistent with the purpose of the conservation district." Thus, renewable energy projects can be located within the Conservation District with approval by way of a Conservation District Use Permit.

DLNR issuance of Incidental Take Licenses: In order to be in compliance with both state and federal endangered species laws, energy and resource development projects that impact threatened and endangered species must be issued an Incidental Take License by both DLNR and the United States Fish and Wildlife Service (USFWS). Both agencies require that project proponents complete a Habitat Conservation Plan (HCP) prior to the issuance of the take licenses. In order to minimize procedural burdens on the applicants, DLNR works cooperatively with USFWS in concurrently processing the request for take licenses. After notice in the periodic bulletin of the Office of Environmental Quality Control, a public hearing is held on the islands affected, which is, whenever possible, held jointly with USFWS. The Board of Land and Natural Resources (BLNR) may approve the federal HCP without requiring a separate version if the federal HCP satisfies all the criteria of the state endangered species statutes. All state agencies, to the extent feasible, work cooperatively to process applications for HCPs on a consolidated basis including concurrent processing of any state land use permit application that may be required. In order to further streamline the process of approving an HCP and the issuance of an Incidental Take License, the state established the Endangered Species Recovery Committee that serves as a consultant to the BLNR by reviewing all HCPs and making recommendations regarding whether they should be approved.

**DLNR Revised Application to Lease State Lands:** For instances when renewable energy producers are interested in leasing state lands, the application form has been revised to comply with Section 171-95 (a) (2) (3) (c), HRS. Land Division takes steps to process the request in a timely manner. Staff coordinates the applicants' request for a lease with OCCL, DOFAW, OHA, and other

government agencies. Then, staff obtains approval from the Land Board for the issuance of a direct lease.

DOA: Research on renewable energy projects may require the importation of various types of microorganisms or plant materials that require permitting through the Plant Industry Division of DOA. During FY08, the Plant Industry Division has been upgrading its Invicta database software and its hardware platform which will make the import process more efficient. Governor Lingle signed Act 159 in FY07 which established an energy feedstock program within DOA to encourage the production of energy feedstock in Hawai<sup>c</sup>i and create milestones and objectives for energy feedstock to be grown in the state to meet its energy requirements. The legislature did not appropriate any funds for the program so DOA has been implementing and moving this program forward in FY 08 primarily thorough collaboration with the Strategic Industries Division in DBEDT.

FTZ: FTZ is supporting the efforts of the DBEDT Strategic Industries Division in this regard.

HCDA: There are no plans to expedite approval processes as HCDA already has Administrative Rules that mandate decisions be made within a set amount of time or else permits are automatically approved. However, HCDA is currently requiring, as a permit condition, private developers to consult with HECO, DBEDT Energy Division, and the Board of Water Supply on ways to conserve/preserve resources. HCDA is also considering, as part of its Mauka Area Plan & Rules incorporation of LEED standards as a requirement of all development – public or private – in its Kaka'ako Community Development District. Same is true at Kalaeloa. Neither will be complete before January 12, 2007, but this policy direction may be incorporated into report.

HHFDC: HHFDC is evaluating the possibility of installing a photovoltaic system at the Pohulani Elderly Project building.

- HTA-CC: HTA and HCC continue reviewing all CIP projects to implement where possible renewable energy or energy efficient programs and projects whenever available.
- UH: UH Mānoa Established the positions of Energy Manager and Assistant Energy Manager to review the application of renewable energy and energy reduction technology to the existing Campus Renewal CIP projects.

#### <u>Act 160</u>

(1) Energy consumption in kilowatt hours for the past year (July 1, 2007, to June 30, 2008) FY '08 (kWh consumption);

Data were received directly from the electric utilities and are presented in Table 2.

FY '08 (paid for kWh consumption);

Data were received directly from the electric utilities and are presented in Table 4.

## <u>Act 160</u>

(2) Steps taken to inventory, investigate, plan, and implement energy reduction efforts; and

AG: The department continues to issue reminders to staff to "Switch it Off," keep blinds closed, and report equipment malfunctions. All new equipment purchases must be Energy Star®, or approved by Administrative Services Office if not Energy Star®.

B&F: Please see items 4, 5, 6 and 7 under "Act 96 SLH 2006: Buildings and Facilities."

DAGS: DAGS is replacing mechanical equipment as the equipment reaches its expected life span or begins to cause problems, and as funding is available. The new equipment has higher efficiencies due to newer technologies and because the older equipment has decreased in efficiency due to age.

DAGS is working with the service and maintenance contractors to aid in the inventory process, which works well since they have the greatest knowledge of the operations and condition of the equipment because they physically see and inspect all of the major equipment on a quarterly basis, at minimum.

DAGS is preparing cost/benefit analyses for replacing existing a/c systems with new, more efficient, systems prior to the existing systems reaching their expected life span.

A cost/benefit analysis determined that replacing the existing energy efficient electronic ballasts and T-8 lamps with the new Super T-8 lighting ballasts and lamps is cost justified. Projects for lighting retrofits are being done with Super T-8s.

DAGS has been working closely with HECO to streamline the process for tracking projects to ensure and encourage maximum participation in rebate programs. HECO rebates are being submitted as projects get implemented.

During fiscal year '08, eleven pilot retrocommissioning projects were initiated on O'ahu, Hawai'i, Maui and Kaua'i to develop strategies that would result in energy savings. Some projects have completed work up to the investigation phases and implemented minor repairs. Other recommended work will need to be included in future CIP budget requests.

DAGS, on behalf of the HSPLS, also plans to implement retrocommissioning on all libraries statewide during FY 2009 subject to available funding. Qualifications from interested retrocommissioning consultants have been solicited and are currently pending selection for the various projects.

DBEDT: DBEDT worked with DOT- Airports Division to develop a statewide Request for Proposals (RFP) for photovoltaic systems. In March 2008, DOT awarded a competitive contract to develop these photovoltaic systems at 10 transportation facilities, including the Honolulu, Kona, Kalaeloa, Kahului, Līhu'e, Moloka'i and Lāna'i Airports as well as the Hawai'i Foreign Trade Zone in Honolulu. The solar systems are scheduled to be developed and installed at the 10 DOT facilities over the next two years.

**Conferences, Seminars and Meetings:** A total of 2,211 people attended DBEDT-sponsored energy-related conferences, seminars and meetings. The following are meetings and conferences not discussed above.

<u>Rebuild Hawai'i Consortium.</u> The Rebuild Hawai'i Consortium met on November 27, 2007. Topics included American Samoa Power Authority; Sustainability Planning/Projects at DOD; Hawai'i BuiltGreen<sup>TM</sup> Certification; Workforce Education in Photovoltaic Design at HPU; SunEdison in Hawai'i; impact of UV on productivity, indoor air quality and energy savings; and City and County of Honolulu-Sustainability Plan. At the Consortium meeting held March 6, 2008, new officers were elected. The meeting topics included the HECO Home Energy Challenge video; the Hawai'i Clean Energy Initiative; the Ni'ihau PV project; the Hawai'i Air National Guard/Hickam AFB—Air Compressor project; preliminary research on Cold Seawater Agriculture Applications; Micro-Planet voltage regulator demonstrations; Johnson Controls' needs assessment tool; Sustainable Saunders project; and the proposed transfer of energy efficiency DSM programs to a third-party public benefits fund administrator. Another meeting of the Consortium was held June 13, 2008. Presentation topics included: USDOE-Hawai'i Clean Energy Initiative; HECO Efficiency Update; Update on Green House Gas Task Force and Climate Change Registry; Wave Energy; Restaurant Benchmarking Project; the latest on LED Lighting; Energy Systems Analysis. There were 51 participants.

<u>2007 Pacific Coast Electrical Association Conference and Expo (PCEA-07).</u> DBEDT and the US Department of Energy (USDOE) were co-sponsors of the HECO Pacific Coast Electrical Association conference and exposition held on Maui, September 6-8, 2007. More than 315 representatives of utilities, government, vendors, private sector and non-profit organizations attended this bi-annual event. The theme of the conference was "Today's Innovation....Tomorrow's Independence." There were 350 attendees, including energy managers, property managers, consultants, vendors, trade allies, utility personnel, and government representatives. The PCEA featured tracks on energy efficiency, facilities and plant engineering, renewable energy and sustainability, and new technologies. DBEDT received a grant from the USDOE to support Hawai'i State Energy Program personnel travel to this event. The USDOE also hosted an exhibit at the event.

2007 Pacific Peer Exchange. DBEDT organized the 2007 Pacific Peer Exchange Meeting held on September 4, 2007, in Honolulu. Representatives from the Territories of American Samoa and Guam, Commonwealth of the Northern Mariana Islands, State of Hawai'i, counties of Kaua'i and Hawai'i, and the U.S. Department of Energy Golden Field Office participated in the Peer Exchange meeting. Funding was provided by USDOE for the participation at this event for the Pacific entities. The agenda included updates on issues, funding opportunities, and procedures by the State of Hawai'i, NETL, Golden Project Management Center, as well as updates on current activities by other participants. The participants found the Pacific Peer Exchange valuable as it provided an opportunity to meet and interact with USDOE personnel as well as the Pacific entities and to learn from each other.

<u>American Samoa Power Authority Board of Directors (ASPA) briefing.</u> DBEDT-SID arranged for a briefing for the five members of the American Samoa Power Authority Board of Directors, Chief Executive Officer, Special Projects and Grants Manager, and Engineering Services Division by companies in Hawai'i that provide products and services that might be of interest to them. The Board of Directors also manages water and sewer and solid waste. The utility has a 30 MW base load. Imperium Hawai'i provided information on biodiesel and its development in Hawai'i. Sopogy, Inc. provided information on a modular concentrated solar thermal system that could have applications in the islands. Luis Vega discussed small wind and solar systems for Pacific Islands, based on his experience with village systems in Fiji, and also some cautions and parameters for an OTEC plant. Maurice Kaya spoke about Hawai'i energy policies and programs. The meeting ended with agreements for Hawai'i to continue to provide information to ASPA, especially in the area of energy efficiency.

<u>West Coast Collaborative (RBA Cohort).</u> Hawai'i is working with a collaborative of Western States (Alaska, California, Idaho, Oregon and Washington) to have a single voice on various projects that would impact the region. The group will work with regional and national goals to evaluate tools which benchmark building energy and impact on the environment. The first project will be to understand how Energy Star® Portfolio Manager works, its basic structure, and derivation of assumptions. This project will be funded by NASEO through Oregon. DBEDT is collaborating on a statement of work.

<u>University of Washington Industrial Assessment Center.</u> DBEDT-SID assisted the University of Washington Industrial Assessment Center with local contacts for energy audits of large manufacturing/industrial facilities in Hawai'i. The program is funded by USDOE.

<u>Sustainability Design Tools Workshops.</u> A workshop on Commissioning and LEED was held April 4, 2008. Featured presenters were Frank Shadpour, President of SC Engineers, Inc. and an ASHRAE Fellow; Tim Jacoby, Vice President of Facilities, Plant Operations and Planning at Rady Children's Hospital in San Diego, California; and George Benda, CEO of Chelsea Group. The workshop covered the benefits of commissioning and retrocommissioning, what is involved and strategies for implementation. The emphasis was on LEED projects and utilization of controls. Real world examples of various commercial building projects were presented.

The last of a series of 13 Sustainability Workshops, a partnership between HECO and DBEDT, was held June 27, 2008. The purpose of the workshop was to define sustainability, provide case studies of Hawai'i business efforts, and discuss tools that businesses can use to direct their sustainability efforts. "Sustainability" was defined as "meeting the needs of the present without compromising the ability of future generations to meet their needs." The workshop reviewed basic issues, defined commonly used terminology, and presented methods used to achieve sustainability. Speakers included conference presenters Kirsten and David Turner; case study presenters from Punahou School, US Army Garrison, Maui Land & Pineapple Company, and Grace Pacific. Discussion of Tools included ecological foot printing, green house gas accounting, energy efficiency audits, financing energy efficiency, triple bottom line accounting, and workforce development. There were an estimated 100 participants.

<u>U.S Department of Defense (DOD) Pacific Region Energy Management Forums.</u> Staff attended the US Army/ USDOE sponsored forum at Fort Shafter on March 17 and 18, 2008. Information on environmental sustainability, strategic initiatives, renewable energy technologies, energy challenges, oil outlook. Information on initiatives for acquisition of on-site energy generation including production of renewable energy for all DOD installations in Hawai'i; Army privatized housing initiative; zero net energy installations; and sustainable design was presented. Staff met with representatives of the US Department of Energy Federal Management Training to lay the ground work for technical assistance and training for state facilities.

Staff attended a DOD Industry Forum on August 15-16, 2007 at the Marine Corps Base Hawai'i Officers' Club on O'ahu. The intent of the Forum was to educate and inform industry of DOD's procurement/acquisition process, opportunities, land assets, contractual and legal parameters, business and program goals and DOD's strategic and economic vision for distributed generation. It is understood that DOD is planning to issue requests for proposals for distributed generation, especially renewable energy in the State of Hawai'i, on a DOD-Hawai'i-wide basis.

**State Facilities Energy Management Advisory Committee:** DBEDT convened the State Facilities Energy Management Advisory Committee (EMAC) in 2007. The Committee was created by the Hawai'i State Legislature through Act 96 of 2006, Governor Lingle's comprehensive "Energy For Tomorrow" energy initiative. This legislation called for the State's Energy Resource Coordinator to appoint an advisory committee to provide input on State energy management in the following seven areas:

- (1) Improve the use of energy-savings contracts;
- (2) Improve procurement of Energy Star® and other energy efficient products;
- (3) Improve building design;
- (4) Reduce energy use;
- (5) Enhance applications of efficient and renewable energy technologies at state facilities;
- (6) Establish benchmarks and evaluate the State's progress in incorporating energy efficiency and conservation for state facilities, vehicles, and equipment; and

(7) Make recommendations on how and when to conduct periodic energy audits.

The committee was composed of representatives from state agencies including the University of Hawai'i, energy service companies, utility companies, equipment manufacturers, construction and architectural companies, environmental, energy and consumer groups, and other energy related organizations. After meeting several times in the fall of 2007, the committee issued a final report the Legislature with recommendations on energy management, which included:

- Ask the State Legislature to provide to DBEDT funding to conduct energy audits of state facilities in accordance with American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standards.
- Adopt ASHRAE Standard 90.1, 2004, as the minimum energy standard for new and renovated buildings and facilities to bring buildings in compliance with the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED<sup>TM</sup>) standards.

- Set up an "award" system by which agencies that implement energy savings projects receive a share of the savings in the next annual budget for pursuit of additional energy savings projects, as an incentive to actively pursue energy conservation.
- Provide DBEDT with funding to identify LEED projects, develop commissioning (enhanced and fundamental commissioning) and retrocommissioning guidelines as defined by LEED
- Consider establishing a State of Hawai'i Department of Energy which would be given additional administrative powers in order to fulfill the energy mandates already established by the Administration and the State Legislature.

#### **Other Energy Efficiency Projects:**

<u>Technical assistance for Energy Performance Contracting (EPC).</u> DBEDT's technical consultant provided information on EPC project financing mechanisms and processes, focusing on municipal tax-exempt leasing, and addressed in detail the substantial financial benefits to Hawai'i Public Housing Authority (HPHA) associated with HUD's frozen rolling base incentive. A representative of Budget and Finance met with the HPHA and provided assurances to the Chairman of the Board that HPHA would not be assuming a financial risk by proceeding with the investment grade audit portion of the RFP. He also provided information on HUD's evolving asset management approach to their project-based accounting procedures and described how the new standards might affect HPHA's ability to bundle EPC projects.

The consultant also provided technical assistance to state facilities including: developing guidelines to implement energy performance contracting; provided guidelines on how to select facilities; developed a spreadsheet to list building and selected conservation measures to use in collecting data to identify candidate projects; and provided guidelines for performance-based maintenance contracts.

The <u>Rebuild Hawai'i Coordinator program</u> was established in 2004. The initial contract created the position of Rebuild Hawai'i Coordinator to work with Hawai'i Rebuild America partnerships, Rebuild Hawai'i Consortium members, and other interested organizations to promote efficient energy resource utilization and provide technical assistance to Hawai'i Rebuild America partners to encourage energy efficiency in buildings. A significant part of this program was to provide technical assistance to the Hawai'i Public Housing Authority. A report on the potential of enhanced use leasing for state facilities projects was also prepared.

<u>Commissioning and Retrocommissioning.</u> The Energy Program Specialist was assigned the management of a consulting contract for Commissioning and Retrocommissioning upon the resignation of another staff member. Major effort was expended in updating contract files and becoming familiar with the project. A roadmap was developed for use by the Branch Manager to authorize further work by the consultant. There are two active projects to provide technical assistance to state agencies. One is for a retrocommissioning project at the University of Hawai'i's Coconut Island Laboratory; the other, to review the DAGS Design Consultant Criteria Manual.

<u>Technical assistance from the U.S. Department of Energy (USDOE).</u> On February 1, 2008, the Manager of the Energy Efficiency Branch and Energy Conservation Program Specialist met with David Rodgers, USDOE to discuss energy efficiency opportunities in buildings, educational facilities, challenges in Hawai'i for energy service companies (ESCOs), and to stress the importance of more information on power purchase agreements and integrated efficiency/renewable energy financial tools. The Director of DAGS briefed Rodgers on the statewide solicitation for EPC.

On March 19, 2008, the Manager of the Energy Efficiency Branch and Energy Conservation Program Specialist met with David McAndrew, USDOE Federal Energy Management Program (FEMP) and representatives of Pacific Northwest National Laboratory and the National Renewable Energy Laboratory to share information on programs available and opportunities for mutual cooperation. Support to the Hawai'i Clean Energy Initiative from FEMP and the labs could include training for energy auditors, use and understanding of monitoring and verification, and use and understanding of various financing alternatives for ESPC. USDOE has made technical assistance to Hawai'i for ESPC a high priority and is offering various services through the State Energy Office. Mark Bailey is the contact at USDOE and Carilyn Shon is the Hawai'i contact.

Preliminary discussions were held with the Energy Services Coalition (ESC) which has been provided funding by the USDOE through the National Association of State Energy Officials (NASEO) to assist State Energy Offices with high level and programmatic support to build the capability in the

state to support energy savings performance contracting. ESC was assigned by the Hawai'i Energy Office to assist DAGS to develop a statewide solicitation for EPC. The draft RFP for qualifying ESCOs was completed, submitted to DAGS for review, and subsequently advertised. Qualified companies are expected to be identified by September 2008.

DBEDT consultant Dave Birr provided sample EPC documents to DAGS and met with them and HPHA representatives to discuss issues in implementation of EPC. He also provided training to DAGS and state facilities through the National Association of Energy Services Companies (NAESCO) under a separate agreement with Lawrence Berkley National Laboratory/USDOE.

<u>Hawai'i Public Housing Authority.</u> DBEDT continued to provide technical assistance to the Hawai'i Public Housing Authority (HPHA). The project would include 5,363 federally-funded residential units that would be retrofit with energy and water efficiency improvements. Estimates of the value of the project are from \$10 - \$15 million with annual energy and water savings of \$1 to \$1.2 million. The project would be carried out under HUD requirements and would use third party financing. Two days of training for the HPHA evaluation committee were held April 21 and 22, at HPHA.

DBEDT staff was appointed a member of the evaluation committee for the HPHA EPC and attended meetings of the evaluation committee and oral interviews of three selected proposers on June 4, 5, and 6. The award is expected in August 2008.

State of Hawai'i Air National Guard (HIANG) Air Compressor System. The Rebuild Coordinator organized and led a partnership among DBEDT, Hawai'i Air National Guard, Hickam Air Force Base, and Hawaiian Electric Company (HECO), which resulted in a \$161,000 replacement of a very inefficient compressor system that was being used by HIANG at the Base. Resulting annual resource savings were approximately \$37,000 in electricity and \$11,000 in water costs. This savings is equivalent to 257,000 kilowatt-hours per year (kWh/yr) and 4 million gallons of water per year. Net of the HECO rebate, the simple payback of this project is 36 months. HECO provided \$10,000 for an audit/design study of the replacement compressor system, as well as a \$13,233 customized rebate; DBEDT provided over \$4,000 in in-kind services. The rebate is being used for additional energy efficient capital improvements at Hickam Air Force Base. In addition, copper windings from the old compressor have been recycled, and the proceeds are being used to enhance the Base's recycling program.

<u>Garbage To Energy</u>. DBEDT staff met with several garbage-to-energy companies featuring much-improved techniques for separating recyclables and producing both usable fuel and electricity from garbage. DBEDT arranged for meetings with regulatory and pollution-monitoring agencies to assess the environmental feasibility of the technologies and to expedite the permitting process. If deployed, these technologies could eliminate much of Hawai'i's garbage while supplying a significant fraction of each county's electricity in addition to supplying some gaseous and liquid fuel.

Integrated Resource Planning/Demand-side Management. SID staff attended a HECO Demandside Management (DSM) Technical Meeting on August 3, 2007 which was focused on future DSM Program Design in light of the Decision and Order from the Hawai'i Public Utilities Commission transferring HECO's DSM programs to a Public Benefits Fund Administrator as of the end of December 2008. The meeting also discussed program development methodology and pilot programs and pricing initiatives. DBEDT provided comments/questions relating to HECO's July 23, 2007 request for "input on how to balance the DSM objectives to determine and optimal DSM portfolio." Technical questions were related to balancing the DSM objectives through an optimal portfolio, Maximum Achievable Potential results, proposed expenditure cap for DSM, and Ratepayer Impact Measure benefit cost ratio.

Staff also attended IRP Technical Sessions: August 30, 2007 on HECO's preliminary load forecast and distributed generation data; October 17, 2007 on incorporating as-available renewable energy onto the HECO system; April 15, 2008 to learn about the utility's approach to Greenhouse Gas analysis, load forecast, fuel price forecast, and supply-side resources.

This round of the IRP, IRP-4, is very complex with consideration of Greenhouse Gas (GHG) and biofuels impacts. HECO acknowledged the importance of the Hawai'i Clean Energy Initiative (HCEI) but stated that this IRP was to be provided to the Public Utilities Commission prior to the results of the initiative being known. HECO's efforts would be to work, within the time frame allowed, to ensure that the IRP and HCEI are not too detached from each other. The load forecast assumptions were broadened to include NYMEX contract prices (futures) as well as the EIA

forecasts and HECO historical trends. Discussion of GHG issues included complexity of including price increases related to GHG regulation such as carbon tax or cap and trade. Demand-side management savings were not included in the forecast, since their DSM programs would be seamlessly transferred to Public Benefits Fund administration in January 2009. On the supply-side, HECO indicated that they would not install or improve any additional fossil-fuel fired generation.

DBEDT is also participating in the IRP updates conducted by the other utilities, HELCO, MECO and KIUC.

<u>Hawai'i Energy Efficiency Program (HEEP)</u>. The Public Utilities Commission opened a docket, February 19, 2008, to investigate issues and requirements raised by the Hawai'i Public Benefits Fund. The PUC will be selecting the HEEP Administrator to implement third-party administered programs (formerly utility DSM programs) by the end of 2008. An RFP will be issued to select prospective service providers. While DBEDT is not participating in this docket, it is monitoring activities. In response to inquiries from ESCOs, DBEDT provided contact information for further information at the utilities and PUC. SID staff attended a January 24, 2008, briefing by HECO explaining the proposed transfer and current status of its rebate program. HECO anticipates that current programs will be continued under the Administrator and that the transfer will be "seamless."

<u>UH-TIM Restaurant Benchmarking Project.</u> The University of Hawai'i Travel Industry Management School (UH-TIM) project provides services related to establishing a Hawai'i Center for Environmental Leadership in Tourism, developing outreach materials, conducting energy analysis, curriculum development, and workshop plans to affect real change and improvements to energy efficiency in present practices in the restaurant industry continues. The Project Manager submitted a research plan for the restaurant benchmarking portion of the project.

Reports and publications: A revision to the 2004 version of the *Guide for Energy Performance Contracting* is underway. *Comparison of Pennsylvania and Colorado Energy Performance Contracting Process* for state facilities is underway.

DCCA: DCCA consulted with DAGS to determine the optimum air conditioning temperature and the necessity of air conditioning certain areas. Reviewed air conditioning maintenance activities and schedules to ensure the proper maintenance of the air conditioning system. Surveyed staff practices in keeping doors closed in air conditioned areas, and made recommendations for proper practices where appropriate.

DHHL: DHHL will continue to keep an inventory of department electric meters, departmental operations and construction.

- DHRD: The department encourages all employees to implement energy conservation practices. Examples include turning off the lights in the restrooms and hallways at the end of the day; turning off copier machines and computers rather than leaving the equipment on sleep mode; using the stairs; and turning off office lights when going to meetings. In May, DAGS implemented the following energy reduction initiatives for the Leiopapa A Kamehameha building, which this department occupies: (a) adjusted the starting time for the building air conditioning systems so that it turns on an hour later; and (b) conducted preliminary assessments for a retro commissioning project.
- DHS: DHS is a participating department in the state's Lead by Example program. As a part of this statewide project, DHS is developing a plan to implement energy reduction efforts.
- DLIR: An assessment of electricity use was completed for nine of the DLIR offices that are not maintained by DAGS Central Services. The assessment of the nine offices covered the period July 1, 2005 through June 30, 2008. Based on this review, the nine offices utilized a total of 1,328,613 kilowatthours, resulting in a total cost of \$421,856.68. Based on the energy usage, DLIR will consult with DAGS and issue a department memorandum reminding all offices of the need to adhere to energy efficiency practices such as turning off electrical lights, printers, copier machines, etc. when not in use. The department will continue to request assistance from DAGS to provide analysis of the nine affected DLIR program offices. Based on DAGS' analysis, DLIR will develop a plan work to with DAGS and DLIR offices to develop and implement energy saving measures to reduce electricity usage. DLIR will also assess each office's space need requirements and consider consolidation of offices.

DLIR participated in an Environmental Preferable Purchasing (EPP) survey mandated under the following Federal and State laws, and the applicable Administrative Directives:

1. Resource Conservation and Recovery Act (RCRA), Section 6002, 42 U.S.C. 6962. The RCRA requires state and local government agencies and their contractors receiving appropriated federal funds to purchase EPA-designated recycled content products.

- 2. Section 103D–1005(b) of the Hawai'i Revised Statutes. Section 103D-1005(b) requires state purchasing agencies and encourages county purchasing agencies to
  - Apply preferences to purchase of products with recycled content;
  - Be consistent with RCRA Section 6002, E/O. 13101 and its progeny;
  - Ensure, to the maximum extent economically feasible, the purchase of materials that may be recycled or reused when discarded and to avoid the purchase of products deemed environmentally harmful.
- 3. Administrative Directive 06-01 signed by Governor Lingle in January 2006 requires State agencies to purchase environmentally preferable products that reduce their impact on the environment and improve indoor environmental quality. Also included are Energy Star® and low toxic products as examples of environmentally preferable products.

The DLIR plan includes the following:

- DLIR will continue to utilize the results of the EPP survey to structure and plan for the period July 1, 2008 to June 30, 2009. In addition, DLIR will continue to utilize the SPO price list and require all programs to purchase recycled and environmentally preferable products.
- DLIR programs have not been major users of Energy Star® products; however, DLIR will continue to include Energy Star® products as part of the procurement approval process. In addition, the DLIR will also include in our procurement procedure a policy to check whether utility rebates are available and can be utilized in the purchase of the products.
- The DLIR policy mandates the purchase of recycled paper and utilization of the State Procurement Offices Price List (SPO PL) for all purchase where products are available through the SPO PL. The DLIR will issue a departmental instructional memo to continue to insure conformance with the results of the EPP Survey as an integral part of the procurement policy.

The gasoline usage and cost of fuel for the two vehicles owned by DLIR were derived by manually reviewing all invoices submitted by the DAGS Automotive Management Division and preparing a spreadsheet. The DLIR plan includes the following:

- DLIR owns the following vehicles: 1998 Ford Windstar; 1994 Chevrolet Astrovan. DLIR does not have immediate plans to purchase another vehicle in the near future; however, DLIR will adhere to the applicable state laws regarding vehicle purchases.
- DLIR's two current vehicles are in sound operational condition and thus DLIR has no plan to replace the vehicles in the near future. Prior to purchasing a vehicle in the future, DLIR will insure that any vehicle purchase satisfies federal and state mandates. In addition, DLIR will purchase the most fuel efficient vehicle that meets the needs of our program.
- DLNR: DLNR continues to work with DBEDT in a statewide collaboration on energy efficiency, as a member of DBEDT's Lead by Example Leadership Group. DLNR will continue to work with the Leadership Group on ideas to implement energy savings across the state.

Act 96, SLH 2006, mandated that each state agency comply with a variety of energy directives involving buildings and facilities, transportation vehicles and fuels. To this extent, DLNR is developing a program to track vehicle expenses and energy consumption for all cars in the department's inventory. Additionally, DLNR is seeking the advice of other state agencies through DBEDT's Lead by Example Leadership Group and will implement internal procedures as appropriate.

DLNR's facility portfolio is limited. Most of buildings owned by DLNR are composed of base yards, harbor facilities and park restrooms. DLNR incorporates energy saving concepts into all of its owned facilities as appropriate. Energy saving concepts include the use of solar water heaters, natural ventilation and lighting, and use of energy-efficient lights. Additionally, DLNR has begun to incorporate energy savings practices into design projects such as the recycling of existing asphalt and concrete pavement into backfill material.

DLNR evaluates the feasibility of implementing energy conservation measures when capital improvement projects are designed. As DLNR staff learns more about energy efficiency and environmental design, they will incorporate these concepts into building and facility design and renovations.

For energy reduction efforts at non-DLNR owned offices and buildings, staff have implemented office paper recycling. Staff are also reminded to turn off equipment when not in use, keep blinds closed, and report equipment malfunctions. Energy efficient light bulbs are used where feasible and timed sensors have been installed to allow automatic shutoff off of lights.

DLNR uses life cycle cost-benefit analysis to purchase energy efficient equipment such as Energy Star® products and uses utility rebates where available to reduce purchase and installation costs.

DLNR further encourages the use of recycled products with contractors. DLNR also adheres to the allowed 10% price preference for bids using recycled products in accordance with Section 103D-1005, Hawai'i Revised Statutes.

Kaho'olawe Island Reserve Commission (KIRC): KIRC is planning to implement an energy conservation demonstration project by remodeling one of its six berthing facilities to reduce energy consumption. Through improved ventilation and innovative design features, KIRC hopes to improve the building's natural air circulation, improve shielding from the hot, desert-like conditions of Kaho'olawe thus reducing cooling cost significantly. If this project is successful, plans will then be developed to convert all remaining berthing facilities to this new design and significantly reduce energy requirements and cost.

To reduce the electrical demands on Kaho'olawe, KIRC has converted two of its four residential water heaters on Kaho'olawe to solar power. KIRC is planning to convert the remaining water heaters and be fully solar-powered for hot water by the next fiscal year.

Kaho'olawe presents a unique opportunity for alternatives to reduce energy consumption due in part to the island's small population and isolation. Additionally, because of the island's unique status as a cultural and environmental preserve, the use of alternative water systems and energy resources is believed to be most appropriate and necessary. As part of KIRC's mandated requirements under HRS 6-K, the restoration program brings 15 to 20 volunteers, adults and students, to the island on Mondays to assist in planting native plants as part of the restoration program. The students normally leave Kaho'olawe on Thursday afternoon. To achieve the conservation of water and energy, KIRC recaptures all the water from the shower facilities. The Reverse Osmosis system produces about 1,500 gallons per day of fresh water, which is more than adequate for the demand.

There are no harbor facilities on Kaho'olawe, in the past the majority of equipment, personnel and supplies have been transported by helicopter. Recently, KIRC has obtained and is operating a 40-foot landing craft that is now transporting the majority of its personnel, equipment and materials. KIRC has significantly reduced fossil fuel usage by shifting to ocean transport verses helicopter.

Additionally, the 11-acre base camp on Kaho'olawe is not connected to the utility grid and operates with diesel generators. One of the steps recently taken was to install a more energy-efficient generator, which reduced diesel usage from 150 gallons per day to 75 gallons per day. As further energy savings projects are implemented, the energy requirements on Kaho'olawe will decrease at which time KIRC is planning to replace the current diesel generator with an even smaller unit that will further reduce diesel fuel usage.

#### DOA:

- Previously identified retro-commissioning and specific energy efficiency projects and related costs for FB 2007-2009.
- Legislature appropriated a total of \$215,058 in general funds in FY08 in the department's operating budget for lighting and window tinting projects and \$79,434 in general obligation bond funds in FY08 in the department's capital improvement program budget for retro-commissioning projects.
- Continued to retrieve information electronically on gas consumption and odometer readings from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08. Continued to use vehicle refueling log for program that have vehicles that refuel at places other than DAGS, Tesoro and Hawai'i Petroleum.
- Continued to retrieve information electronically on gas consumption and odometer readings for each vehicle from DAGS Automotive Management Division, Tesoro and Hawai'i Petroleum for FY08.
- Monitored and compiled kWh consumption data and cost for electricity for FY08.
- Reminded staff of department's Energy and Water Conservation and Resource Efficiency Program which provides policies, guidelines and practices with goal to minimize energy, fuel and water consumption and implement resource-efficient operations. Includes department's target consumption goals for electricity, fuel and environmentally preferred products.
- Distributed DAGS' memo requesting employees to conserve energy and to report any water waste from open faucets, leaky plumbing fixtures, and broken and/or inefficiently run irrigation systems.

- Developed a spreadsheet to compare data in FY05, FY06, FY07, and FY08 on electricity kWh consumption and percentage increase/decrease from previous year and distributed to program managers for their review and information.
- DOE: DOE has developed an internal system that enables the comprehensive management of all utilities electricity, water, sewage disposal, and gas for all schools through a central office. As of March 1, 2007, the payment for all utilities was centralized into one office. The office is now able to track DOE accounts to establish programs that monitor utility use by schools, specifically identifying schools with higher than anticipated consumption.

DOE implemented a school energy conservation program on July 1, 2007. DOE has calculated the "unadjusted" allocation of kilowatt hours (kWh) for all schools using the average electricity consumption in the 36 months through June 2006 as a base. Beginning this school year, schools that reduce their consumption below the allocated amount will receive half the value of the savings; schools that fail to reduce their consumption below the allocated amount will be charged for half the value of the kWh used above the allocated amount. The state office will bear the risk of increases (and benefit from any reductions) in electricity rates. The office will receive the school kWh usage against the allocation twice a year, in January for the preceding July through December, and in July for the preceding January through June. Schools earning a rebate will receive those funds via an allocation from the electricity funds and will be able to use those funds at their discretion. Schools requiring a charge back will receive a bill for collection from the Auxiliary Services Branch. Immediate steps for conservation programs continue and are listed as follows:

- Continue with implementation of LEED Silver for new and major construction projects. Training for LEED New Construction has been completed by key DOE personnel. Supplemental training is required on "LEED for Schools" guidelines just recently released by USGBC.
- Continue with installation of low-flow bathroom fixtures whenever fixtures require replacement.
- All incandescent lamps are being replaced with compact fluorescent lamps (CFL).
- A study for measuring the effectiveness of motion (occupancy) detectors for controlling classroom lighting has been completed. Future ESCO work will include motion/occupancy detection switches for classroom lighting.
- Life Cycle Cost Analysis (LCCA) will be performed on school equipment and operations.
- LCCA results will be used to determine product selection for ESCO, Performance Contracting, Municipal Leasing, and/or Purchase Power Agreement activities.
- Continue meetings with vendors seeking new energy conserving technologies. Continuation with pilot (test) studies of new promising technologies.
- Establishment of an Energy and Water Conservation "Steering Committee" or "Task Force" within the Office of School Facilities and Support Services to expedite and streamline multiple conservation activities between branches and within the DOE as a whole.
- Open discussions with the Board of Water Supply to seek innovative water conservation concepts, projects, and/or studies such as an Irrigation Management Control System, plant species, drip irrigation, and captured rainwater.

Immediate steps for school electricity conservation are listed below:

- Set air conditioning so that the room temperature is 76 degrees.
- Do not turn on any air conditioning until 7:00 a.m. or (if the air conditioning unit is turned on and off manually) until the room temperature reaches 74 degrees, which ever comes later, and turn off all air conditioning no later than 4:30 p.m.
- Use timers to turn off 75 percent of night lights between the hours of 10:00 p.m. and 6:00 a.m.
- By June 15, 2009, replace all appliances (refrigerators, microwave ovens, toasters, coffee makers, rice cookers, etc.) in classrooms and offices with Energy Star®-rated appliances. Personal appliances should be limited to no more than one of each on each floor of a building. All other personal appliances shall be removed by December 31, 2008.
- Purchase or lease only Energy Star®-rated computers, copiers, printers, and servers.
- Turn off computers, printers, and copiers at the end of the day.

The following capital improvement projects (CIP) have added to DOE's overall energy usage.

• New portables (connected to the existing school's electrical meter):

- O'ahu: Mililani Ike Elementary (2); Campbell High (5); Moanalua High (2); Waipahu Elementary (3); 'Ewa Elementary (1); Kahuku High & Intermediate (1); Leilehua High-SPED (2); Kahuku High- SPED (1); Leilehua High- Stryker (3); Mililani High- Stryker (2); Mililani Middle- Stryker (3); Solomon Elementary- Stryker (4); Ka'ala Elementary- Stryker (1); 'Ānuenue Elementary (1)
- Hawai'i: DeSilva Elementary (1); Waimea Elementary (2)
- Maui: Maui High (2); King Kamehameha III Elementary (2)
- New facilities, all on O'ahu:
  - o Mauka Lani Elementary- 8 classroom building connected to existing meter
  - Pearl Ridge Elementary- cafeteria expansion connected to existing meter
- o Sunset Beach Elementary- administration building connected to existing meter
- Wai'anae High- 8 classroom building connected to existing meter

These increases were somewhat offset through DOE's ongoing program to retrofit classrooms with more energy efficient fluorescent light fixtures (conversion of T-12 light fixtures to T-8 light fixtures) and heating, ventilation and air conditioning (HVAC) equipment.

- DOH: All future designs for renovations and construction will be LEED Certified. Air conditioning for the various health centers is shut off at 4:30 p.m. and on holidays and weekends. Window units have been installed in several offices to avoid having to turn on the central bldg units for those working late or on weekends. Air conditioning units for all DOH renovations are energy efficient and qualify for a HECO rebate. The air conditioning systems at Diamond Head Health Center and Leeward Health Center are being retrofitted due to their age. The new units are more energy efficient and this will reduce energy consumption. The air conditioning system at Ala Moana Health Center has just been retrofitted with more energy efficient units. This will reduce energy consumption. As light fixtures are retrofitted, lamps and ballasts are changed to more energy efficient ones.
- DOT-Airports: The Airports Division is collecting data on the division's current construction projects in the design phase. The division will investigate the facilities' energy consumption to plan for reduction, and also plan for efficient design. The division is implementing energy efficient fixtures and equipment in its planned projects.

The Airports Division is investigating existing facilities for options to reduce energy use.

The replacement and relocation of the Diamond Head Chiller Plant project is under construction. The new equipment will have high energy reduction and efficiency.

Renovation of Airport Lounge project has been awarded for construction. This is the first LEED CI project.

- DOT-Harbors: The division needs to develop a program to ensure that inventorying, investigations, and plans and implementations are effective and in compliance with regards to Act 160.
- DOT-Highways: The Highways Division has an inventory of equipment and a baseline of energy consumption. The division has also started the replacement of traditional traffic signal lamps with the new LED lamps as well as a systematic replacement of older computer equipment with Energy Star® compliant equipment with LCD screens and variable speed CPUs.
- DOTAX: DOTAX continues to follow energy conservation best practices as outlined by the Director of Taxation in his memorandum dated March 1, 2006. DOTAX continues to monitor and control usage of after-hour and weekend air conditioning.
- FTZ: FTZ is in the process of replacing the current lighting system inside the warehouse by reducing the number of lights and replacing the 300 incandescent light bulbs with energy efficient 40-60 watt CFL bulbs. These bulbs are on back-order due to high national demand. FTZ may also install a relay to allow lights inside the warehouse to be turned on remotely and tied in with new security system. HCDA: Not applicable.
- HHFDC: HHFDC has taken steps to reduce energy consumption. Whenever possible, incandescent lamps are being replaced with fluorescent equivalents. Fluorescent T-12 lamp set-ups are continually being retrofitted with T-8 electronic ballasts and lamps. An electrical control timer has been installed on the air conditioning plant at our main office building to control the day and hours of operation.
- HHSC: HHSC is looking into implementing energy audits on all of their facilities when funds are available. The energy audits will assist each facility with recommendations to reduce energy.
- HSPLS: HSPLS has replaced the aging air conditioning systems at Mililani and Salt Lake-Moanalua Public Libraries to improve operating and energy efficiency in FY08. HSPLS has executed contracts through

DAGS to retrofit lighting fixtures at all 51 public libraries, statewide. These fixtures are being replaced with energy efficient electronic ballasts and super T-8 lamps.

HTA-CC: 1) Raise temperature setpoints by one degree, from 72 degrees to 73 degrees. 2) Monitor schedules to optimize use of AC in client and administration areas. 3) Reduce the amount of "conditioned" air being blown out thru Exhibit Hall doors.

NELHA: The Green Energy Zone concept was investigated and proposed to the legislature. Implementation will proceed.

A substantial portion of NELHA's energy costs is dependent upon tenant demand and consumption of seawater – NELHA has no control over these amounts. Therefore, to implement energy reductions, it is necessary to either create energy production projects for NELHA or to cease development of economic enhancement projects.

- PSD: Under Act 213-07, the department received a capital appropriation of \$500,000 to perform initial planning efforts to identify, prioritize and seek funding to design and construct various retrofits to PSD facilities that would result in measurable savings in energy consumption and reflect the department's efforts (as well as those of other state agencies) to comply with the intent of Act 160. PSD is currently awaiting approval of its FY 2009 CIP Expenditure Plan (transmitted in August, 2008) to the Office of the Governor. That, in turn, will enable DAGS to proceed with all post-Project Initiation activities. Presently, the department has, with the assistance of DAGS-DPW, made a selection of a consulting firm (InSynergy) to conduct an assessment of energy efficiency improvements throughout all PSD programs, statewide. Upon completion of these assessments, expected between 1<sup>st</sup> and 2<sup>nd</sup> Quarters of FY 2010, a series of retro-commissioning projects will be implemented using a number of financing strategies, as yet determined.
- UH: UH Mānoa the University has established a campus-wide Energy Management Committee that is responsible for identifying, evaluating, and implementing building level and departmental level energy reduction projects. The UH Sea Grant Center for Smart Building and Community Design and the Vice Chancellor for Administration, Finance and Operations support a staffer who works part-time on campus sustainability issues including lighting and air conditioning. The University has established a campus energy website to provide information on campus energy polices and projects, at <a href="http://www.soest.haswaii.edu/UHMEnergy">www.soest.haswaii.edu/UHMEnergy</a>. A "search and destroy" program has been established to replace incandescent light bulbs on campus. There are literally thousands of incandescent light bulbs on campus. Whenever someone finds an incandescent light, they can report its location at telephone number 956-2861 and someone will arrange for its immediate replacement.

UH Hilo – The University has no new initiatives; but continues to turn lights off when building occupants are vacated.

Honolulu CC, Kapi'olani CC, Leeward CC, Windward CC, Hawai'i CC, Kaua'i CC – there are no new initiatives at these campuses; but the campuses continue to consolidate classes into filled buildings during evening, weekends, and summer to minimize air conditioning, lighting and other utility costs.

Maui CC – the campus is currently testing voltage regulators on the campus from a vendor, MicroPlanet. These voltage regulators might improve campus energy efficiency depending on how badly MCC's sour power fluctuates. If the test results are positive, then Maui CC will purchase the voltage regulators. The campus exterior lights are connected on to the computerized EMS system to control timers more efficiently. Door sensors have been installed in the Science Building lecture halls which deactivate the air conditioning units when doors are left open for more than five minutes. In addition, the Science Building has been connected to the computerized EMS system to control air conditioning timers more efficiently.

## <u>Act 160</u>

- (3) A **plan** or alternatives to reduce energy consumption in the future;
- AG: AG is looking to the Lead by Example policy group and DAGS for further ideas to implement for energy savings. The department is working with DAGS to have air conditioning systems evaluated and updated, if deemed necessary. The office is also working with DAGS to reduce lighting in lesser used areas and hallways.
- B&F: The department previously issued a memorandum encouraging all employees to initiate and implement energy efficient practices (i.e., turning off office light when not in use or when leaving for the day, turning off computer terminals at the end of the day, distributing Energy Star® saving tips, etc. The department, as well as all other departments, is working with DBEDT and DAGS in this effort to identify and implement energy reduction initiatives.
- DAGS: PWD efforts include: developing a LEED application guideline for state agencies; providing LEED and commissioning programmatic support; projects to apply for LEED Silver certification at New Mānoa Library, New Kohala Library, Keaukaha Military Reservation, Joint Military Center, and the Maui Regional Public Safety Complex; the Kamamalu Building Renovation which was previously listed as a LEED pilot project has been suspended indefinitely; retrocommissioning projects for various DAGS facilities statewide, including the State Capitol; on-going training and partnering with HECO and in conjunction with DBEDT; sub-metering where feasible; updating and implementing additional policies; and keeping abreast of the latest energy reducing innovations and practices.

A major pilot project that was initiated in FY 2008 is the Central Services Division Photovoltaic (PV) System. A Request for Proposals was issued to request PV/solar power via a Power Purchase Agreement (PPA). The power provider, through a PPA, would design, install, operate, maintain and sell power to the state at a rate that is anticipated to be lower than the HECO rate and PV system would also reduce the consumption of energy generated by fossil fuels. Proposals were received and are under negotiation.

DBEDT: DBEDT will continue to offer technical assistance and training opportunities to state facilities in assessing potential for energy, water, and renewable energy measures, financing considerations, and implementation. This will include continuing to invite state employees and consultants to seminars on energy efficiency.

DBEDT signed an agreement with the US Environmental Protection Agency on October 14, 2005 to participate in the Energy Star® 10% Challenge program. The goals are to improve the energy efficiency of state facilities by 10% and reduce greenhouse gas emissions. The State of Hawai'i's Partnership Plan includes: developing public and private partnerships to promote EPA's Portfolio Manager energy performance rating system; providing training for public and private partnerships to identify opportunities for improvements; participating in and promoting EPA's Energy Star® webcasts, programs, and resources; and incorporating Energy Star® products in state agency procurements.

DBEDT provided invitations to participate in the spring 2008 webcasts on Energy Star® programs and resources, as well as materials to state agencies on how to prioritize energy conservation measures, benchmark their buildings and conduct financial calculators on payback related to implementation of energy efficiency measures.

DBEDT's energy-related work is supported by federal funds, often the result of winning nationwide competitive grant solicitations. On February 1, 2008, the Manager of the Energy Efficiency Branch and Energy Conservation Program Specialist met with David Rodgers, USDOE to discuss energy efficiency opportunities in buildings, educational facilities, challenges in Hawai'i for energy service companies, and to stress the importance of more information on power purchase agreements and integrated efficiency/renewable energy financial tools. The Director of DAGS briefed Rodgers on the statewide solicitation for energy performance contracting services.

On March 19, the Manager of the Energy Efficiency Branch and Energy Conservation Program Specialist met with David McAndrew, U.S. DOE Federal Energy Management Program (FEMP) and representatives of Pacific Northwest National Laboratory and the National Renewable Energy Laboratory to share information on programs available and opportunities for mutual cooperation. Support to the state from FEMP and the labs could include training for energy auditors, use and understanding of monitoring and verification, and use and understanding of various financing alternatives for energy performance contracts.

DBEDT has requested a one-year, no cost extension and amendment to the federal grant that funded 2007 PCEA, Peer Exchange, and Rebuild Hawai'i activities.

<u>Hawai'i-EPA Clean Energy-Environment State Partnership</u>. The state has agreed to work with the federal Environmental Protection Agency (EPA) in developing an action plan for clean energy as part of EPA's Clean Energy-Environment State Partnership. Hawai'i is at the forefront of clean energy and environmental initiatives. This partnership will strengthen the state's position as it undertakes new programs promoting energy efficiency and renewable energy sources.

The State Department of Health is an observer/advisor in the Hawai'i partnership. EPA provides partners with access to a comprehensive technical assistance package. Hawai'i's partnership focuses on Green Power Purchasing, Lead by Example (building efficiency, financing, Environmentally Preferable Purchasing, and biofuels), and Climate Change. This partnership will also give DBEDT the opportunity to learn from EPA and other states ways to measure impact of energy and resource efficiency programs on Hawai'i by determining multipliers for energy and cost-savings, energy system, greenhouse gas, air quality and human heath, and economic and macroeconomic benefits.

Major work was organizing a priority task group teleconference for Lead by Example on October 10, 2007; and a general Partnership teleconference on October 23, 2007. The Climate Change Action Group held a meeting on February 20, 2008, to discuss the current status of climate change policy efforts in Hawai'i. Larry Lau, Department of Health, presented an update on the State Task Force and discussed the Climate Registry Board. Data needs, methodologies, and processes were also discussed.

A teleconference with EPA representatives on possible technical assistance for DBEDT's intervention in the "wheeling" docket was also held.

This year the following information and exchange was also provided by EPA on topics listed below.

- Models and programs that states have used to help low-income households implement energy efficiency measures;
- Models that can estimate the impacts of GHG mitigation policies and information on GHG inventory best practices from other states;
- Best practice guidance for Lead-By-Example activities;
- Best practice guidance for purchasing green power by facilitating contact between Hawai'i, EPA's Green Power Partnership, and EPA's Landfill Methane Outreach Program;
- Energy Star®'s Portfolio Manager and Target Finder;
- Financing options, as well as environmentally preferred product purchasing, and
- Approaches other states have used to finance energy efficiency projects and/or meet energy efficiency goals in schools.
- DCCA: The department will continue its practice of using energy-saving light bulbs and maintaining its energy efficient lighting system that is activated by motion detectors. DCCA will evaluate its air conditioning system and discuss the suitability of a retrocommissioning project with DAGS. The department will continue to encourage energy conservation and share appropriate energy reduction tips submitted by staff.
- DHHL: DHHL conducts in-house energy programs to inform all staff to reduce energy consumption using guidelines and recommendations from the educational leaflets from the US Department of Energy.
- DHRD: The department will continue to encourage all employees to implement energy conservation practices and will work with DAGS to identify energy efficiency initiatives.
- DHS: DHS is a participating department in the State's Lead by Example program. As a part of this statewide project, DHS is developing a plan to reduce future energy consumption.
- DLIR: Based on its energy use, DLIR plans to do the following:
  - Continue to consult with DAGS and issue a department memorandum reminding all offices of the need to adhere to energy efficiency practices such as turning off electrical lights, printers, personal computers, copier machines, etc. when not in use.
  - Continue to request assistance from DAGS to provide analysis for the nine affected DLIR program offices. Based on DAGS' analysis, DLIR will continue to develop plans to develop and implement energy saving measures to reduce electricity use.
  - Assess each office's space need requirements and consider consolidation of offices.

- Conduct self-audits of DLIR offices to identify and reduce energy consumers such as small appliances and electronic equipment.
- DLNR: DLNR is currently in the design phase of a large project to improve energy systems at 'Iolani Palace that began in FY 2008 and which will serve as a demonstration for energy efficiency across the state. Construction is scheduled to begin in October 2009. 'Iolani Palace is not only a Hawaiian national treasure but is the only official state residence of royalty in the United States. Built in 1882, the Palace was the official residence of the Hawai'i kingdom's last two monarchs. Restoration in the 1970s included the installation of air-conditioning units to help preserve the building as well as the treasures held within.

Located in a humid environment, the Palace is highly susceptible to mold growth and other forms of biodeterioration. Inadequate air conditioning systems can lead to variations in relative humidity, which can further lead to chemical reactions. The negative results of these chemical reactions are that: metals may corrode; many dyes may fade; glass collections may be damaged; furniture joints may be loosened; paint chipping may emanate from canvases; and paper may be cockled. Thus, as with any historical site, 'Iolani Palace's air conditioning system is of great importance to the environment in which the collections are housed.

The existing air conditioning system has deteriorated and has failed to provide the necessary climate control for uniform temperature and humidity. The system continues to experience breakdowns and continued system failures will lead to eventual damage and loss of invaluable cultural artifacts.

Thus, the entire air conditioning system needs to be replaced. This creates an opportunity for DLNR to look toward energy efficiency in the development of a new air conditioning system for the Palace. Staff have begun to look at new technologies in air conditioning systems which utilize photovoltaic technology and recycled water. Additionally, commissioning of the chosen system will be included for optimum performance.

Taking into consideration its historic significance, the Palace's façade would not be altered. However, adjoining buildings could be utilized for alternative energy production, which could in turn be used at the Palace. With \$900,000 allocated in FY 2006 (Act 160) for design and construction, DLNR has begun to design an air conditioning and climate control system for the Palace. In 2007, the project was allocated \$4.5 million to continue and implement the project.

The state would benefit greatly from having 'Iolani Palace serve as a pilot project for energy efficient air conditioning technology while saving money and preserving Hawai'i's history.

DOA: DOA will initiate lighting and window tinting operating projects and retrocommissioning CIP projects. The department will send out reminders to employees to practice energy and water conservation measures. It will also replace air conditioning systems and units with energy efficient ones. DOA plans to upgrade to more energy efficient pumps and motors on irrigation systems as funds allow. It will install timers and other electronic controls on selected irrigation systems. DOA will promote car-pooling and bicycling, establish energy efficiency working groups, and establish maximum allowable air conditioning settings by building and by season.

DOE: Plans for future energy consumption reduction include both energy conservation measures and efforts with renewable energy.

A) Energy Conservation Measures

- Energy Audits: The Energy Conservation Coordinator will continue with on-site school assistance for energy audits and educational exchange.
- "Energy Conservation Program:" Investigative work will continue to establish feasibility and planning for a key program component 3 year baseline. The baseline will allow for calculation of monetary incentives for schools that conserve energy and penalties for those who go beyond their baseline limit.
- Technology Pilot Studies: Various types of technologies are available that may reduce energy use for DOE. However, their adaptability, suitability, etc. for use with DOE remains an element of risk management.
- Education and Training: More education and training will be sought from energy conservation equipment vendors. There will be continuation with LEED education for DOE employees via on-the-job and USGBC product offerings.
- Energy Service Company (ESCO)-Utility Energy Services Contracts (UESC)-Power Purchase Agreements (PPA) Effort: Investigative work will continue in the areas financing energy

conservation equipment retrofitting with the assistance of ESCO, UESC, and PPA.

- Enhanced Energy Audit: Investigation into the possible expansion of the energy audit to go beyond school equipment inventory count to measurement and verification aspects of energy conservation enterprises.
- DOE Operations and Maintenance Best Practices: DOE will internally hold internal meetings among offices and branches that will align and focus energy conservation efforts. This can include product selection by committee based upon maintenance, performance, LEED, and cost benefits.
- DOE School Best Practices: An investigation for identification of school equipment and/or operations that may best benefit energy conservation with the least amount of negative impact to school operations and functions will be reviewed. This will also include procurement and availability of energy efficient products or products favoring LEED criteria.
- DOE is developing guidelines, standards, and best practices to meet new energy efficiency requirements for all CIP and repair and maintenance (R&M) projects.
- B) Renewable Energy

The Legislature, through Act 96, SLH 2006, appropriated \$5 million to DOE for a pilot photovoltaic project. The specific objectives, as set forth in the Act, as they relate to this photovoltaic pilot project include:

- To have, at minimum, a project site at one of the public schools within each of the counties of O'ahu, Hawai'i, Kaua'i and Maui.
- Installation of photovoltaic (PV) system to be timed in conjunction with substantial roof repairs or roof replacement.
- To use net energy metering to offset the cost of the system.
- To recapture system cost within three quarters of the useful life of the PV system.
- When advantageous, to use energy-savings contract such as third party lease or purchase to maximize the objectives of this section.
- Report results and recommendations from this project.

The Governor released the funds for this project and DOE selected Energy Industries (EI) as the consultant to implement this program. Energy Industries is a Hawai'i based Energy Service Company (ESCO) that specializes in reducing the energy expenses of its clients by identifying and implementing energy conservation measures (ECMs) that reduce electrical demand load. EI also specializes in the integration of renewable and distributed energy systems along with energy conservation measures. The contract with EI included the following deliverables:

- Rating and selection of project sites (schools) based on a weighted scorecard.
- Develop basis of design and determine optimal implementation.
- Project management and quality assurance during construction.
- Measurement, verification, and reporting of pilot results one year after PV installation.

Based on the life cycle analysis from EI, DOE determined that it is not economically feasible for the department to purchase and install PV systems without taking advantage of the federal and state tax credits. Therefore, a better strategy of obtaining PV systems for the schools would be to develop a power purchase agreement (PPA) and have a 3<sup>rd</sup> party vendor install and maintain the PV systems. DOE would purchase the kilowatts generated by the system at a discounted rate.

DOE has developed a Request For Proposal (RFP) for this project that will require the installation of one 30 - 50 kW system on the islands of Hawai'i, Maui, and Kaua'i, and four systems on O'ahu. The RFP is currently being reviewed by the Attorney General's Office before the DOE issues it. DOE hopes to get the proposal out by the end of November 2008.

- DOH: All future designs for renovations and new construction will be LEED Certified. The department's fiscal office will insure that any appliance purchases by programs meet Energy Star® ratings. The department's fiscal office will insure that vehicle purchase meet all energy conservation requirements. The department will request CIP funds for installing a central energy management system to control the air conditioning units at all of its major buildings. Presently, the timers are located at each individual building and not controlled at one location. This is not an efficient way to control air conditioning for multiple buildings.
- DOT-Airports: The Airports Division will inform its employees and tenants about saving energy. The Airports Division will educate its engineering staff regarding building green and using energy efficient

technology in order to implement whole-building design practices. The Airports Division will upgrade design and construction standards and guidelines according to the LEED standard.

- DOT-Harbors: The division will increase awareness and training for employees on available energy conservation technology or practices. It will also develop program milestones or metrics to encourage reduction of energy consumption.
- DOT-Highways: All future building projects will be designed to meet LEED Silver certification, all new traffic signals will use LED lamps, and all new computer equipment will be Energy Star® compliant.
- DOTAX: DAGS is currently working on energy savings measures, including air conditioning retrocommissioning, for the Ke'elikōlani Building in which the DOTAX O'ahu District Office is located.
- FTZ: FTZ is working with DOT-Airports to prepare a RFP for solar electricity generation for its 5A roof in downtown Honolulu. At this time, FTZ is anticipating generating approximately 0.3 MW.
- HCDA: HCDA plans to incorporate energy savings devices and procedures in future developments as well as retrofit where appropriate.
- HHFDC: HHFDC continues to monitor all energy uses. In conjunction with electrical use, the agency is monitoring synthetic natural gas and water. Upon seeing a change up or down, the reason for the change is investigated. The end plan is to use all the alternatives possible and maximize the amount of rebates and enticements for change to not only reduce energy consumption but to reduce the amount paid monthly and recoup as much of the initial up-front costs as possible.

HHSC: HHSC plans to use the approved ESCO list that DAGS is developing to implement energy reduction at all of their facilities.

HSPLS: HSPLS has been working directly with DAGS on the new North Kohala and Mānoa Public Libraries. These new projects are trying for a LEED Silver rating. The construction contract for the new North Kohala Public Library went out to bid and was awarded to Isemoto Contracting Co., Ltd. for \$6,895,900. Construction is set to start in September 2008 and completed in late 2009. The construction contract for the new Mānoa Public Library went out to bid and was awarded to Allied Pacific Builders, Inc. This project is anticipated to start in November 2008 and completed in mid 2010.

HTA-CC: 1) Get clients involved by posting "Green" signs at doorways to ask their help in keeping doors closed. 2) Educate employees and ask for their help in turning off room lights where possible. 3) Monitor daily consumption and demand.

- NELHA: NELHA filed a Request for Proposals (RFP) on July 23, 2008 to construct and operate a very large PV project for its use. It is believed such a project could substantially reduce energy costs over the next twenty years. The RFP awaits issuance by DBEDT. An RFP for construction and operation of a 1 MWe OTEC plant is expected to be filed through DBEDT in the near future, with the same goal in mind.
- PSD: As mentioned earlier in this report, the department will collaborate with DAGS-Division of Public Works to engage the services of an energy efficiency expert with specific familiarity with survey work performed at correctional facilities across the U. S. mainland to: assess PSD's current energy usage dynamic, statewide; evaluate the current condition of the department's building operating systems production and/or consumption of energy; evaluate the building systems' impacts, favorable or otherwise, on the buildings' energy usage proper; analyze the various options available that would enable the department to meet the goals set forth in Act 96; and make recommendations on the upgrade pathways the department should pursue, together with priority setting; project work scope and opinions of probable costs associated with each recommendation.
- UH: UH Mānoa The University is planning to design up to fifteen re-roofing projects so that they are capable of being retrofitted with up to 500kW photovoltaic systems.

UH Hilo – No new plans.

Honolulu CC – No new plans.

Kapi'olani CC – No new plans.

Leeward CC – No new plans.

Windward CC - No new plans.

Hawai'i CC - No new plans.

Maui CC – will be soliciting a Request for Proposals to establish a Power Purchase Agreement (PPA) for photovoltaics (PV) in the campus rear parking lot. The College is working with Maui Electric Company (MECO) with a pilot "Green Pricing" program which will allow MECO to install

PV systems on their buildings. Maui CC would purchase the power from MECO at a discount and all excess power would be sold to the community by MECO. This pilot program is in the early feasibility study stage. The Campus has received a donated wind turbine and is currently researching a location to install the wind turbine system.

## Kaua'i CC – No new plans.

Community College System – The community colleges are in continuous discussion with various third parties regarding participating in a power purchase program using a PV system. The third party will install the PV system at no cost and in return the colleges will purchase the electricity generated by the PV system at a guaranteed rate lower than the local utility rate.

| WASTE PREVENT POLLUTION | COMMUNITY COLLEGES     |
|-------------------------|------------------------|
| ROGRAM TO MINIMIZE V    | INIVERSITY OF HAWAII - |

| UNIVERSITY OF | HAWAII - COMMUNITY COLI | LEGES                                                   |                           |                 |                           |                    |                       |   |
|---------------|-------------------------|---------------------------------------------------------|---------------------------|-----------------|---------------------------|--------------------|-----------------------|---|
| Campus        | Program Title           | Description of Program                                  | Vendor (if applicable)    | Duration of     | Materiais Recvcie         | Quantity           | Any Other Information |   |
|               |                         |                                                         |                           | Program         |                           | Recycled (Per Yr)  |                       |   |
| Honolulu CC   | AMT                     | Recycle used automobile oil                             | Commercial                | Over 20 years   |                           |                    |                       |   |
|               | AMT                     | Recycle used solvents                                   | Commercial                | Over 20 years   |                           |                    |                       |   |
|               | AMT                     | Recycle coolants                                        | Recycling Machine         | 1 year          |                           |                    |                       |   |
|               | AMT                     | Recycle training cars                                   | Metal recycle             | Over 20 years   |                           |                    |                       |   |
|               | AERO                    | Recycle engine oil                                      | self cleaning by strainer | Over 10 years   |                           |                    |                       |   |
|               | Various                 | Recycle metals                                          | Commercial                | Over 20 vears   |                           |                    |                       |   |
|               | Café                    | Recycle cooking oils & grease traps                     | Commercial                | Over 20 vears   |                           |                    |                       |   |
|               | Auto Body Diesel        | Grease trap                                             | Commercial                | Over 20 years   |                           |                    |                       |   |
|               | Various                 | Aluminum cans, plastics, white paper, computer ink      | Commercial                | Over 10 years   |                           |                    |                       |   |
|               |                         | cartridges                                              |                           |                 |                           |                    |                       | _ |
|               | Campus                  | E-cycle electronics                                     | Apple Computer            | To start 10/08  |                           |                    |                       | _ |
| Windward CC   | Cans/Plastic            | The janitors at the college began recycling cans        | Janitors                  | Approximately 7 | Cans and Plastics         |                    |                       |   |
|               | Kecycling               | and plastics.                                           |                           | years           |                           |                    |                       |   |
|               | Paper recycling         | A part of a paper recycling effort campuswide,          | Campus Wide               | Approximately   | Paper                     |                    |                       | - |
|               |                         | faculty and staff use notepads that have been           |                           | 27 years        |                           |                    |                       |   |
|               |                         | converted from used paper.                              |                           |                 |                           |                    |                       |   |
|               | Green Waste             | WCC has designated a site on campus where               | Groundskeeper             | Approximately   | Green waste, i.e., grass, |                    |                       |   |
|               | recycling               | green waste is collected and used by the grounds        |                           | 27 years        | leaves, plant trimmings,  |                    |                       |   |
|               |                         | crew as mulch.                                          |                           |                 | tree branches and         |                    |                       | _ |
| <u>A-</u>     |                         |                                                         |                           |                 | prunings.                 |                    |                       | _ |
| 1             | Telephone Books         | The faculty and staff at the college turn in old        |                           | Approximately 7 | Telephone Books           |                    |                       |   |
|               |                         | telephone books in an effort to recycle the old         |                           | years           | -                         |                    |                       | _ |
|               |                         | books.                                                  |                           |                 |                           |                    |                       | _ |
|               | Campus                  | E-cycle electronics                                     | Apple Computer            | To start 10/08  |                           |                    |                       |   |
| Maui CC       | Maui County             | Maui CC has agreed to allow usage of space on           | Maui County who hires     | Approximately 4 | Newspaper, plastics,      |                    |                       |   |
|               | Recycling Site          | campus for a community recycling site run by Maui       | Maui Disposal to operate  | years           | bottles, cardboard, HI-5  |                    |                       |   |
|               |                         | County. This site allows MCC a convenient               | the recycling center.     |                 | redemptiom                |                    |                       |   |
|               |                         | location for the campus to recycle bottles, plastics,   |                           |                 |                           |                    |                       |   |
|               |                         | and paper waste. This is also a HI-5 redemption         |                           |                 |                           |                    |                       |   |
| 00,           |                         | center.                                                 |                           |                 |                           |                    |                       |   |
| Maul CC       | Maul CC Campus          | A Maui CC student club manages several recycling        | Hawai'i Institute for     | Approximately 3 | Plastic bottles and cans  |                    |                       |   |
|               | Kecycling Program       | collection points on campus and transports              | Human Rights              | years           |                           |                    |                       |   |
|               |                         | recycables from the collection points to the Maui       |                           |                 |                           |                    |                       |   |
|               |                         | County recycling/redemption site.                       |                           |                 |                           |                    |                       |   |
|               | Administrative          | Paper generated by the Administrative Services          | Helaní Farms Hāna and     | Approximately 3 | Shredded paper            | 250 garbage bags a |                       | _ |
|               | Services shredded       | Unit at MCC is shredded and given to a local flower     | Maui Floral Farms in      | years           |                           | year               |                       |   |
|               | paper                   | farmer who uses the shredded paper for their            | Kula                      |                 |                           |                    |                       |   |
|               |                         | business.                                               |                           |                 |                           |                    |                       |   |
|               | Hecycled glass chips    | Maui CC purchases large quantities of recycled          | Aloha Plastic Recycling   | Approximately 7 | Glass chips               | 50 tons of glass   |                       | _ |
|               |                         | glass chips to use in planter beds located              | Company                   | years           |                           | chips              |                       |   |
|               | Recycled Disefic        | Marii OC has constructed and included and included      |                           |                 |                           |                    |                       |   |
|               | Parking Curbs           | mulded with recycled plactic builds to the second state | Alona Mastic Kecycling    | Approximately 9 | Recycled Plastics         | 100 Parking Lot    |                       |   |
|               | Como Rinna              |                                                         | Company                   | Vears           |                           |                    |                       |   |

| [                             | 1                                                                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                  | ·····                                                                              |                                                                                                      |                                                                            |                                                                             |                                                                                  | -                                                                                                                                      |                                                                                                                                                                                               |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Any Other Information         |                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                               |                                                                                        |                                                                                    |                                                                                                      |                                                                            |                                                                             |                                                                                  |                                                                                                                                        |                                                                                                                                                                                               |
| Quantity<br>Recycled (Per Yr) | 100-300                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                               |                                                                                        |                                                                                    |                                                                                                      |                                                                            |                                                                             |                                                                                  |                                                                                                                                        |                                                                                                                                                                                               |
| Materials Recycle             | Telephone Books                                                                                                                                                                          | Saves paper product use<br>from landfill and saving for<br>culinary dept. in purchases                                                           |                                                                                                                                                                           |                                                                                                                               |                                                                                        |                                                                                    |                                                                                                      |                                                                            |                                                                             |                                                                                  |                                                                                                                                        |                                                                                                                                                                                               |
| Duration of<br>Program        | 4 years                                                                                                                                                                                  | Started Spring<br>2006                                                                                                                           | Began<br>approximately 2<br>years ago                                                                                                                                     | Began<br>approximately 4<br>vears ado                                                                                         | Began<br>approximatly 4                                                                | Began<br>approximately 2<br>vears ado                                              | Began<br>approximately 2<br>years ago                                                                | Began<br>approximately 2<br>years ago                                      | Began<br>approximately 4<br>years ago                                       | Began<br>approximately 2<br>years ago                                            | Began<br>approximately 2<br>vears ago                                                                                                  | Began<br>approximately 3<br>years ago                                                                                                                                                         |
| Vendor (if applicable)        | Judy Moon                                                                                                                                                                                | Paina/Logo designed on<br>campus                                                                                                                 | NA                                                                                                                                                                        | NA                                                                                                                            | Maui Disposal                                                                          | NA                                                                                 |                                                                                                      | NA                                                                         | NA                                                                          | NA                                                                               | NA                                                                                                                                     | ۲                                                                                                                                                                                             |
| Description of Program        | When the new telephone books are issued, a staff<br>member organizes a collection site on campus to<br>collect the old phone books as part of an annual<br>phone book recycling contest. | When people purchase a MCC plastic reusable coffee mug in the campus cafeteria, they receive a discount on their beverage each time they use it. | MCC Culinary converted to use of recyclable and<br>reusable bags on campus and eliminating poly<br>propylene containers and plastic bags from the<br>MCC Culinary facilty | MCC Culinary converted to use of re-usable<br>melamine plast and stainless steel flatware in its<br>Foodcourt dining facility | MCC Culinary recycles all glass, plastic and<br>cardboard food and beverage containers | MCC Culinary began using biodegradable com<br>bags in all garbage and compost bins | MCC Culinary eliminated use of plastic spoons and utensils in kitchen labs and educational settings. | MCC Culinary Fine Dining Restaurant began service water upon request only. | MCC Culinary Arts provide their green waste to the local farmer for re-use. | MCC Culinary Arts capture cooking oils and fats for<br>local Biodiesel producers | MCC Culinary Arts began a composting program<br>where student learn and practice separataing<br>compostable matter in the kitchen labs | MCC hosted and is now an active member of the<br>Small Islands of the World Conference who is<br>consortium of island institutions around the world<br>working towards island sustainability. |
| Program Title                 | Telephone Books                                                                                                                                                                          | Keusable Coffee<br>Mugs                                                                                                                          | Culinary Arts- Use of<br>Recyclable Products                                                                                                                              | Culinary Arts - Use of<br>re-usable plates and<br>flatward                                                                    | Culinary Arts -<br>Recycling Program                                                   | Culinary Arts -<br>Biodegradable corn<br>bags                                      | Culinary Arts -<br>Eliminated use of<br>plastic spoons and<br>utensils in kitchen labs               | Culinary Art- Fine<br>Dining Restaurant -<br>Water                         | Green Waste                                                                 | Cullnary Arts -<br>Cooking Oils and Fats                                         | Composting                                                                                                                             | Islands of the World                                                                                                                                                                          |
| Campus                        |                                                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                               |                                                                                        | Maui CC                                                                            |                                                                                                      |                                                                            |                                                                             |                                                                                  |                                                                                                                                        |                                                                                                                                                                                               |

PROGRAM TO MINIMIZE WASTE PREVENT POLLUTION UNIVERSITY OF HAWAII - COMMUNITY COLLEGES 06/07/08

PROGRAM TO MINIMIZE WASTE PREVENT POLLUTION UNIVERSITY OF HAWAII - COMMUNITY COLLEGES 08/07/08

| <u> </u>                                  | ogram Title | Description of Program                                                                                                                                                                                                                                                 | Vendor (if applicable)   | Duration of                                                                        | Materials Recvole | Quantity                                              | Any Other Information |                                        |
|-------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|-----------------------|----------------------------------------|
| MCC - MECO                                |             | MCC and MECO signed and executed a                                                                                                                                                                                                                                     | VIN                      | Program                                                                            |                   | Recycled (Per Yr)                                     |                       |                                        |
| Partnership                               |             | partnership to reduce MCC's institutional electrical consumption and to enhance MCC's Sustainable Technology curriculum                                                                                                                                                |                          | re-signed<br>approximately 1<br>year ago.                                          |                   |                                                       |                       |                                        |
| MCC New Science<br>Bldg                   |             | MCC's new Science Bldg is designed to meet a minimum of LEEDs Silver                                                                                                                                                                                                   | Design Partners          | Design 50%<br>completed                                                            |                   |                                                       |                       | 1                                      |
| MCC Wind Turbine                          |             | MCC received a donation of windturbine. MCC is<br>assessing a location for the installation of the<br>turbine                                                                                                                                                          |                          |                                                                                    |                   |                                                       |                       | 1                                      |
| MCC PV Project                            |             | MCC has run a Sustainable Tech class to teach<br>students how to assemble and install PV units.<br>This class will be installing these units on to the<br>College's rooftops incrementally, class by class.                                                            |                          | Began Spring<br>2008.                                                              |                   |                                                       |                       | ······································ |
| MCC PV Rear Part<br>Lot                   | king        | MCC RFP to solicit for a PPA for a PV system to<br>cover the MCC rear parking lot                                                                                                                                                                                      | AA                       | RFP<br>appoximately<br>95% completed                                               |                   |                                                       |                       |                                        |
| MCC - Waterless<br>Urinals                |             | MCC's newly renovated Student Center Bldg was<br>equipped with waterless urinals in both Men's room<br>in the facility                                                                                                                                                 | Falcon Waterless Urinals | Opened in 2008                                                                     |                   | Saves approx<br>10,000 gallons of<br>water per urinal |                       |                                        |
| MCC - MECO Gr<br>Pricing Program          | u eeu       | MCC and MECO is currently assessing engaging in<br>a pilot Green Pricing Program, where MECO install<br>PV panels on MCC rooftops and sells the power to<br>MCC at a discount and MECO sells the excess<br>power to the public as part of the green pricing<br>program | Υ.                       | Assessing<br>feasibility                                                           |                   |                                                       |                       |                                        |
| VerDiem Power<br>Management Sofi          | ware        | MCC installed a power management software on to<br>its network to control PC's and appratus that are left<br>on over night on the campus in labs, classrooms,<br>etc                                                                                                   | Ver Diem                 | Installed<br>approximately 2<br>years ago                                          |                   |                                                       |                       | •••••••••••••••••••••••••••••••••••••• |
| Micro-Planet Volt:<br>Regulators          | age         | MCC is testing voltage regulators on the campus to<br>test whether MCC's incoming power has<br>fluctuations which these regulators would level out<br>and therefore reduce overall power consumption on<br>the campus                                                  | Micro-planet             | MCC piloting<br>the voltage<br>regulators for 90<br>days. Install<br>about 2 weeks |                   |                                                       |                       |                                        |
| MCC - Chevron<br>Partnership              |             | Chevron is conducting a feasibility study of MCC's campus in order to propose a plan to assist MCC to reduce MCC's greenhouse gas generation                                                                                                                           | Chevron                  | Chevron<br>Chevron<br>conducting a<br>free feasibility<br>studv.                   |                   |                                                       |                       |                                        |
| MCC - DBEDT<br>Anemometer Loai<br>Program |             | MCC was contracted by DBEDT to run a State-wide<br>anemometer loan program for entities interested in<br>wind energy and needing to test the wind factors in<br>specific locations around the State.                                                                   | DBEDT                    | Contract signed<br>in 2008                                                         |                   |                                                       |                       |                                        |

| PROGRAM TO N<br>UNIVERSITY OF<br>08/07/08 | MINIMIZE WASTE PREVENT I<br><sup>-</sup> HAWAII - COMMUNITY COL | OLLUTION                                                                                                                                                                                                                                                                           |                                                                       |                                            |                                                          |                                                                              |                                                                                      |
|-------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Campus                                    | Program Title                                                   | Description of Program                                                                                                                                                                                                                                                             | Vendor (if applicable)                                                | Duration of<br>Program                     | Materials Recycle                                        | Quantity<br>Recycled (Per Yr)                                                | Any Other Information                                                                |
| Kapi'olani CC                             | Community Recycling<br>Center Program                           | Designed to providde convenient recycling drop-off services to campus and neighboring community.                                                                                                                                                                                   | City & County of<br>Honolulu in conjunction<br>with Honolulu Disposal | Approximately 4<br>years                   | Aluminum cans, glass,<br>cardboard, newspapers,<br>paper | Undetermined                                                                 |                                                                                      |
|                                           | Apple Computer E-<br>Cycling Program                            | Recycling program for computers, monitors,<br>peripherals from all computer manufacturers                                                                                                                                                                                          | Apple Computers                                                       | 1 year                                     | Personal computers,<br>monitors and peripherals          | 17 pailets<br>(approximately 400<br>pieces)                                  | Program supported and<br>staffed by KCC staff in<br>CELTT and Auxiliary<br>Servicias |
|                                           | Campus Recycling<br>Program                                     | A KCC student group manages several recycling<br>collection points for aluminum cans and transports<br>them to the recycling bins.                                                                                                                                                 | None                                                                  | Approximately 4<br>years                   | Aluminum cans                                            | Undetermined                                                                 | 0205 120                                                                             |
|                                           | community Mulch<br>Program                                      | KCC is designated as one of the City & Conty of<br>Honolulu's recycled green waste sites, where mulch<br>is delivered to various campus sites and is<br>available for campus and community pickup and<br>use.                                                                      | City & County of<br>Honolulu                                          | Approximately 4<br>years                   | Green waste                                              | Undetermined                                                                 |                                                                                      |
|                                           | Campuswide<br>Recycling                                         | Recycling bins (3) will be placed near the entry points to all major campus buildings.                                                                                                                                                                                             | None                                                                  | Approximately 1<br>year                    | Aluminum cans, office<br>paper, bottles                  | Undetermined                                                                 | Program will be<br>supported by KCC<br>Auxiliary Services Staff.                     |
| A-4                                       | Energy Management<br>System                                     | Integrate energy management systems for air<br>coniditioning                                                                                                                                                                                                                       | Web Control                                                           | Approximately 2<br>vears                   | Engergy Conservation                                     | Undetermined                                                                 | Administration                                                                       |
| Kapi olani CC                             | Re-usable Coffee<br>Mugs                                        | To cut down on the use of foam cups, KCC will sell<br>thermal mugs for use in purchasing discounted<br>coffee. This is also to encourage the purchase of<br>coffee in the cafeteria rather than have individuals<br>use coffee pots in the offices to reduce power<br>consumption. | ano                                                                   | Approximately 1<br>year                    | Sustainability, energy<br>conservation                   | Undetermined                                                                 | Sponsoring group is<br>KCC Sustainability<br>Committee                               |
|                                           | Products                                                        | Purchase carpet meeting LEED standards<br>Purchase disposable utensils which are<br>biodegradable                                                                                                                                                                                  | Inteface FLOR<br>Undetermined                                         | Approximately 1<br>year<br>Approximately 1 | Sustainability<br>Sustainability                         | Undetermined                                                                 | Administration<br>KCC Sustainability                                                 |
| Kaua'i CC                                 | Recycle cooking oil<br>and grease                               | Vegetable oil and grease is cleaned out of the<br>grease traps by the vendor, the cooking oil is<br>recycled.                                                                                                                                                                      | Kaua'i Grease Trap<br>Maintenance                                     | Approximately<br>18 years                  | Vegetable oil and grease                                 | 200 gallons                                                                  | Committee                                                                            |
|                                           | Collection of waste oil from vehicles                           | Kaua'i CC students bring their cars to the<br>automotive shop to learn how to properly change<br>and collect the vehicle oil. The collection is given<br>to the vendor.                                                                                                            | Speedie Lube                                                          | Approximately<br>31 years                  | Engine Oil                                               | 100 gallons from<br>Auto Technology, 25<br>gallons from<br>Operations & Main |                                                                                      |
|                                           | white paper recycling<br>program                                | Kaua'i CC faculty started a program recycling white of paper. Facilities; the maintenance staff transports the paper to a collection dumptster where the vendor collects the paper to be recycled.                                                                                 | Garden Island Dispodal                                                | Approximately 7<br>y ears                  | White paper                                              | 1000 bs.                                                                     |                                                                                      |

Appendix 1. UH Community Colleges Waste and Pollution Initiatives

|          | · · · · · · · · · · · · · · · · · · · |                                                                                 |                                                  |                                               |                                                 |                 |                                             |                                                                                                  |                                                  |                                                 |         |                                              |                                                 |                                                                     |                                                 |                                                                       |                                           |                                                   |                         |                                                  |                                                   |              |
|----------|---------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|---------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|-------------------------|--------------------------------------------------|---------------------------------------------------|--------------|
|          | Any Other Information                 | 40-cubic yard roll-off<br>container custom<br>designed for recycling            |                                                  |                                               |                                                 |                 |                                             |                                                                                                  |                                                  |                                                 |         |                                              |                                                 |                                                                     |                                                 |                                                                       | Droaram is curroatty                      | heing established - soon                          | to be implemented       | -                                                | Program is supported by<br>Apple Computer         |              |
|          | Quantity<br>Recycled (Per Yr)         | Undetermined                                                                    |                                                  | Undetermined                                  |                                                 |                 | 1 Indetermined                              |                                                                                                  | Indetermined                                     |                                                 |         | Undetermined                                 |                                                 |                                                                     | Undetermined                                    |                                                                       |                                           |                                                   |                         | Detentially, to a day day                        | Potentially nundreds<br>of pounds                 |              |
|          | Materials Recycle                     | 1) aluminum cans, glass                                                         | 2) neewspaper, corrugated cardhoard office namer | Green waste                                   |                                                 |                 | ll ihrarv & reference hooks                 |                                                                                                  | Green weste from cofotorio                       | CICCII MASIC II OIII CAICICIIA                  |         | Tree & shrub pruning                         |                                                 |                                                                     | Metals, aluminum, oil                           |                                                                       | Cartridues for printers                   | facsimiles, copiers, and                          | multi-function machines | Compliant and monitore                           | cumptures and monitors,<br>all brands             |              |
|          | Duration of<br>Program                | on-going<br>program                                                             |                                                  | Program went                                  | Into effect in<br>April 2006 &                  | continues       | Program                                     | inception -                                                                                      | On-doind                                         | brootam                                         | program | On-going                                     | program                                         | 2                                                                   | On-going                                        | program                                                               | To be                                     | determined                                        |                         | on-aoina                                         | program                                           |              |
|          | Vendor (if applicable)                | City & County of<br>Honolulu in conjunction<br>with Honolulu Disposal           |                                                  | City & County of                              | Honolulu in conjunction<br>with Hawaiian Earth  | Products        |                                             |                                                                                                  |                                                  |                                                 |         | Akahi Services                               |                                                 |                                                                     | Snitzer Steel, metals                           | Lennox, aluminum,<br>Unitek oil                                       | Entrade Corporation                       | -                                                 |                         | Annie Committers                                 |                                                   |              |
|          | Description of Program                | Designed to provide convenient recycling drop-off services to campus community. |                                                  | Leeward CC is designated as one of the City & | where mulch is available for campus & Community | pick-up and use | Waianae campus donates unwanted reference & | library books to students, community members, and<br>the homeless shelter rather than disconting | Native Hawaiian/Shade House program recycles all | freshareen waste from the campus cafeteria into | compost | Tree and shrub pruning are converted to wood | chips & recycled to use as mulch for the Native | Hawaiian plant collection and the Halau Lei and<br>Medicinal Garden | Automotive program recycles metal, aluminum and | oil parts/prodcuts/by-products through various<br>recvcling companies | Leeward CC is in the preliminary stagesof | establishing a recycling program for used printer | cartridges              | Statewide computer recycling effort involving UH | and the K-12 schools to be coordinated at the UH- | Mânoa campus |
|          | Program Title                         | Community Recycling<br>Center Program                                           |                                                  | Community Mulch                               |                                                 |                 | Used Library &                              | Reference Books                                                                                  | Green Waste                                      |                                                 |         | Tree Pruning and                             | Wood Chips                                      |                                                                     | Automotive Programs                             |                                                                       | Cartridge Recycling                       |                                                   |                         | Computer Recycling                               | ,                                                 |              |
| 08/07/08 | Campus                                | Leeward CC                                                                      |                                                  |                                               |                                                 |                 | Leeward CC                                  |                                                                                                  |                                                  |                                                 |         |                                              |                                                 |                                                                     | Λ.                                              |                                                                       |                                           |                                                   |                         | ****                                             |                                                   |              |

PROGRAM TO MINIMIZE WASTE PREVENT POLLUTION UNIVERSITY OF HAWAII - COMMUNITY COLLEGES

| Inventory    |         |
|--------------|---------|
| DHHL Vehicle | FY 2008 |

.

| es      |
|---------|
| ~       |
| 0       |
| ·=      |
| _       |
| <u></u> |
|         |
| $\sim$  |
| -       |
| Jahu    |
| U.      |
| -       |

|             |             |             | fuel          | gasoline87        |
|-------------|-------------|-------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | actual tuel | consum.     | (gal)         | 9701.70           | 2854.11           | 4991.86           | 2495.44           | 5330.15           | 1065.80           | 440.14            | on vehicle        |
|             |             | <u> </u>    | average (     | 5.84              | 4.11              | 5.32              | 6.07              | 6.79              | 4.86              | 3.94              | available (       |
| gallons per | 100 miles   | (fuel       | economy)      | 08 6.667/5        | 08 4.762/3.448    | 08 5.882/4.762    | 08 7.143/5        | 08 7.692/5.882    | 08 5.556/4.167    | 08 4.545/3.333    | 08 no fuel rating |
|             |             |             | As of Date    | 11/12/20          | 11/10/20          | 11/10/20          | 11/12/20          | 11/12/20          | 11/12/20          | 11/10/20          | 11/10/20          |
|             |             |             | Mileage       | 166,125           | 69,443            | 93,832            | 41,111            | 78,500            | 21,930            | 11,171            | 7,427             |
|             |             | Acquisition | Cost          | \$17,053.04       | \$5,900.00        | \$4,500.00        | \$24,460.42       | \$8,000.00        | \$4,500.00        | \$7,200           | \$27,996.23       |
|             |             | Model       | Year          | 1992              | 1995              | 1992              | 2005              | 1997              | 2001              | 2004              | 2008              |
|             |             |             | Serial Number | 2GNEG25H8N4132080 | 1G1L055MISY264061 | 1FTCR10U2NUDO6502 | 1FMZU62K75ZA32343 | 3GNEK18RXVG164830 | 1B4GP25301B158589 | 1B3EL36104N341974 | 1FBNE31L88DA59307 |
|             |             |             | Vehicle Desci | Van passenge      | Corsica           | Ranger            | Explorer 4x4      | Tahoe             | Caravan           | Stratus           | E-350 12psgr      |
|             |             |             | Model         | Chevy             | Chevy             | Ford              | Ford              | Chevy             | Dodge             | Dodge             | Ford              |
|             |             | License     | Plate         | SH7297            | SH9412            | SH9110            | SHB577            | SHB268            | SHD 358           | SHD 359           | SHD 319           |

Maui Vehicles

|         |       |                  |                 |       |             |         |            | gallons per |           |             |             |
|---------|-------|------------------|-----------------|-------|-------------|---------|------------|-------------|-----------|-------------|-------------|
|         |       |                  |                 |       |             |         |            | 100 miles   |           | actual fuel |             |
| License |       |                  |                 | Model | Acquisition |         |            | (fuel       |           | consum.     |             |
| Plate   | Model | Vehicle Desci Se | rial No.        | Year  | Cost        | Mileage | As of date | economy)    | average ( | gal)        | fuel        |
| SH8652  | Jeep  | Cherokee SU 1J₂  | 4FJ28S3VL578912 | 1997  | \$23,812.35 | 62,960  | 11/13/2008 | 6.667/5     | 5.84      | 3,677       | gasoline 87 |

Kauai Vehicles

|                                                      | oline-87    |
|------------------------------------------------------|-------------|
| fuel                                                 | 5.32 gas    |
| fuel<br>(gal)                                        | 194         |
| average                                              | 5.97        |
| gallons<br>per 100<br>miles<br>(fuel<br>econom<br>y) | 6.667/5.    |
| As of Date                                           | 11/19/2008  |
| Mileage                                              | 32,585      |
| Acquisition<br>Cost                                  | \$24,943.59 |
| Model Year                                           | 1999        |
| Serial N                                             | 1FMZU:      |
| iption                                               | xplorer 4x4 |
| Vehicle Descr                                        | Ford MPVH E |
| Model                                                | Ford        |
| License<br>Plate                                     | SH9218      |

| Inventory    |         |
|--------------|---------|
| DHHL Vehicle | FY 2008 |

Oahu Vehicles

Molokai Vehicles

|             |           |             | el          | asoline           | esel              | esel              | asoline           | asoline           | asoline           |
|-------------|-----------|-------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | el        | onsump.     | Jal) fu     | 6810.6 ga         | 0.0 di            | 0.0 di            | 7045.8 ga         | 2588.1 ga         | 1466.8 ga         |
|             | fu        | 8           | average (g  | 26.3              |                   |                   | 6.52              | 5.13              | 5.84              |
| gallons per | 100 miles | (fuel       | economy)    | 6.667/5.263       | n/a               | n/a               | 7.143/5.882       | 5.263/5           | 6.667/5           |
|             |           |             | As of Date  | 11/14/2008        | 11/14/2008        | 11/14/2008        | 11/14/2008        | 11/14/2008        | 11/14/2008        |
|             |           |             | Mileage     | 114,081           | 41,529            | 27,170            | 108,064           | 50,450            | 25,116            |
|             |           | Acquisition | Cost        | \$24,424.04       | \$1,600.00        | \$55,434.00       | \$32,490.00       | \$26,051.43       | \$24,355.97       |
|             |           | Model /     | Year (      | 1995              | 1984              | 1997              | 2002              | 2004              | 2006              |
|             |           |             | Serial No.  | 1FMDU34X8SUC34215 | 1GCGD34J4EF343955 | 1GDP7H1J0VJ501905 | 1GBHK24U52E113017 | 1FMZU72K24ZA03031 | IFTNF21566EC86474 |
|             |           |             | Description | Explorer 4x4      | Cargo truck 2     | GMC dump tr       | Silvarado 4x4     | Explorer 4x4      | Ford pick up I    |
|             |           |             | Model       | Ford              | Chevy             | GMC               | Chevy             | Ford              | Ford              |
|             |           | License     | Plate       | SH8310            | SH8369            | SH8558            | SHA305            | SHA907            | SHC230            |

West Hawaii Vehicles

|                          |              | fuel        | gasoline          | gasoline          | gasoline     | gasoline          | gasoline          | gasoline         |
|--------------------------|--------------|-------------|-------------------|-------------------|--------------|-------------------|-------------------|------------------|
|                          | fuel consum. | (gal)       | 613.664           | 5463.7872         | 3230.6296    | 5049.52           | 0                 |                  |
|                          | -            | average     | 6.35              | 5.84              | 5.84         | 6.35              |                   |                  |
| gallons per<br>100 miles | (fuel        | economy)    | 7.143/5.556       | 6.667/5           | 6.667/5      | 7.143/5.556       |                   | n/a              |
|                          |              | As of Date  | 11/21/2008        | 11/21/2008        | 11/21/2008   | 11/21/2008        | 11/21/2008        |                  |
|                          |              | Mileage     | 9,664             | 93,558            | 55,319       | 79,520            | 53,625            | no mileage       |
|                          | Acquisition  | Cost        | \$24,999.95       | \$25,088.95       | \$13,166.04  | \$26,568.59       | \$30,449.95       |                  |
|                          | Model        | Year        | 2007              | 1998              | 1986         | 2005              | 1997              | 2005             |
|                          |              | Serial No.  | IFMCU93167KA15624 | 1GCGK24R9WE252855 | 1WBUCCJF8GH  | 1D7HU18N45J516396 | 1GBHK34J4VF008123 | 2SWUW11456260072 |
|                          | Vehicle      | Description | Escape            | 4x4 pick up tr    | Dump truck a | 1500 Quad ca      | Flatbed truck     | Trailer          |
|                          |              | Model       | Ford              | Chevy             | GMC          | Chrysler          | Chevy             | SnowBr           |
|                          | License      | Plate       | SHC612            | SH9064            | SH9054       | SHB591            | SH8514            | SH847            |

East Hawaii Vehicles

| Fuel                                          | gasoline -87      | gasoline -87      | gasoline -87      |
|-----------------------------------------------|-------------------|-------------------|-------------------|
| fuel cons.<br>(gal)                           | 4043.6601         | 1007.5548         | 1085.7889         |
| average                                       | 5.97              | 5.32              | 6.79              |
| gallons per<br>100 miles<br>(fuel<br>economy) | 6.667/5.263       | 5.882/4.762       | 7.692/5.882       |
| As of Date                                    | 11/12/2008        | 11/12/2008        | 11/12/2008        |
| Mileage                                       | 67,733            | 18,939            | 15,991            |
| Acquisition<br>Cost                           | \$24,999.01       | \$24,778.06       | \$31,381.05       |
| Model<br>Year                                 | 2002              | 2005              | 2008              |
| Serial No.                                    | 4M2ZU76E11UJ09823 | 5TEUU42N55Z122690 | 1D7HU18218J178398 |
| Description                                   | Mountaineer       | Tacoma 4x4 v      | Ram 1500          |
| Model                                         | Mercury           | Toyota            | Dodge             |
| License<br>Plate                              | SHA154            | SHB897            | SH 337            |

|         | Year   | License<br>Plate # | NIN                                                                    | GVWR          | EPA<br>Hwy<br>Fuel | EPA<br>City<br>Fuel | Acq.<br>Cost  | Fuel Type  | In-use Mileage | In-use Fuel<br>Consum. | In-use Avg<br>Fuel Econ | Annual<br>Mileage | Annual Fuel<br>Consum | Annual<br>Avg Fuel<br>Econ |
|---------|--------|--------------------|------------------------------------------------------------------------|---------------|--------------------|---------------------|---------------|------------|----------------|------------------------|-------------------------|-------------------|-----------------------|----------------------------|
| 1992 SH | ς<br>Υ | 14208              | 1HTSCNPL5NH409720                                                      | 19000         |                    |                     | \$0.00        | DIESEL     | 297.00         | 35.10                  | 8.46                    |                   |                       |                            |
| 2003 S  | S      | HA653              | 1NPZH27X73D714835                                                      | 14908         |                    |                     | \$0.00        | DIESEL     | 304.00         | 39.40                  | 7.72                    | 304.00            | 39.40                 | 7.72                       |
| 2003    | 0,     | SHA901             | 1FTNF20D33ED82433                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 2,417.00       | 159.70                 | 15.13                   | 2,417.00          | 159.70                | 15.13                      |
| 2005    |        | SHB437             | 1FTSF20PX5EA36577                                                      | 9400          |                    |                     | \$0.00        | DIESEL     | 816.00         | 84.50                  | 9.66                    | 816.00            | 84.50                 | 9.66                       |
| 2005    | -      | SHB438             | 1FTSF20P15EA36578                                                      | 9400          |                    |                     | \$0.00        | DIESEL     | 2,040.00       | 138.00                 | 14.78                   | 2,040.00          | 138.00                | 14.78                      |
| 9002    |        | SHB440             | 1F1SF20PX5EA36580                                                      | 9400          |                    |                     | \$0.00        | DIESEL     | 1 110 00       | 40.09                  | 13.//                   | 1 110 00          | 40.09                 | 13.//                      |
|         |        |                    | 1 F I S F 2 U F 9 0 E B 1 2 5 7 9<br>1 E T S E 2 0 D E E E B 1 2 5 8 0 | 9400          |                    |                     | \$0.00        |            | 7 272 00       | BC.CC1                 | 10.40                   | 7 272 00          | 100.00                | 10.40                      |
| 2006    |        | SHC345             | 1FDWF36P36EB24320                                                      | 3400<br>13000 |                    |                     | \$0.00        | DIESEL     | 202.00         | 30.64                  | 6.59                    | 202.00            | 30.64                 | 6.59                       |
| 2008    |        | SHC719             | 1FDSX20R78EA28953                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 35,517.00      | 341.93                 | 103.87                  | 35,319.00         | 319.21                | 110.65                     |
| 2008    | ~      | SHC741             | 1FDSX20R98EA28954                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 9,752.00       | 768.44                 | 12.69                   | 8,448.00          | 692.93                | 12.19                      |
| 1992    |        | SHC759             | J8DK7A1U2N3200748                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 1,703.00       | 83.98                  | 20.28                   | 1,703.00          | 83.98                 | 20.28                      |
| 200     | ω      | SHC762             | 1FDWX36R28EA24355                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 6,733.00       | 627.24                 | 10.73                   | 6,144.00          | 574.49                | 10.69                      |
| 200     | ω      | SHD163             | 1PDXF46R98EA09249                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 667.00         | 51.02                  | 13.07                   | 167.00            | 25.64                 | 6.51                       |
| 199     | 6      | SHD164             | 1GBHG31F3X1153760                                                      | XXXX          |                    |                     | \$0.00        | DIESEL     | 2,157.00       | 206.06                 | 10.47                   | 1,569.00          | 154.41                | 10.16                      |
| 199     | 5      | SH4061             | 1GBGC24K3NE197466                                                      | 8000          |                    |                     | \$0.00        | GAS        | 8,950.00       | 768.65                 | 11.64                   | 8,338.00          | 728.68                | 11.44                      |
| 199     | 2      | SH4062             | 1GBGC24K4NE198206                                                      | 7200          |                    | -                   | <b>\$0.00</b> | GAS        | 1,052.00       | 16.20                  | 64.94                   | 1,052.00          | 16.20                 | 64.94                      |
| 199     | 2      | SH4063             | 1GBGC24K9NE198136                                                      | 8600          | 17 1               | с<br>С              | \$0.00        | GAS        | 5,833.00       | 530.87                 | 10.99                   | 5,253.00          | 480.46                | 10.93                      |
| 199     | 32     | SH4065             | 1GBGC24K1NE196882                                                      | 7200          |                    |                     | \$0.00        | GAS        | 2,690.00       | 268.70                 | 10.01                   | 2,386.00          | 241.70                | 9.87                       |
| 19      | 91     | SH4092             | 1B6KE3657MS321949                                                      | 7100          |                    |                     | \$0.00        | GAS        | 479.00         | 781.04                 | 0.61                    | 400.00            | 730.64                | 0.55                       |
| 19      | 89     | SH4107             | 1GT6CS14Z0K8528101                                                     | 4900          |                    |                     | \$0.00        | GAS        | 492.00         | 24.70                  | 19.92                   | 492.00            | 24.70                 | 19.92                      |
| 19      | 06     | SH4135             | 1GCGR33KOLF304739                                                      | 7200          | 18 1               | 5                   | \$0.00        | GAS        | 27,996.00      | 312.50                 | 89.59                   | 27,996.00         | 312.50                | 89.59                      |
| 19      | 90     | SH4136             | 1GCGR33K8LF304617                                                      | 9000          | 13 1               | 0                   | \$0.00        | GAS        | 3,701.00       | 370.62                 | 9.99                    | 3,309.00          | 338.24                | 9.78                       |
| 19      | 90     | SH4138             | 1GBGC24KXLE229696                                                      | 8600          | 13 1               | 0                   | \$0.00        | GAS        | 1,955.00       | 167.48                 | 11.67                   | 1,955.00          | 167.48                | 11.67                      |
| 2       | 066    | SH4140             | 1GBGC24K2LE229689                                                      | 8600          |                    |                     | \$0.00        | GAS        | 3,202.00       | 79.25                  | 40.40                   | 749.00            | 27.00                 | 27.74                      |
| Ψľ      | 066    | SH4142             | 1GBGC24K4LE229709                                                      | 8600          |                    |                     | \$0.00        | GAS        | 2,506.00       | 193.63                 | 12.94                   | 1,915.00          | 143.77                | 13.32                      |
| 200     | 991    | SH4143             | 1GBGR33K4MF300604                                                      | 9070          |                    |                     | \$0.00        | GAS        | 1,543.00       | 118.80                 | 12.99                   | 1,543.00          | 118.80                | 12.99                      |
| 20      | 00     | SH4103             | 1G1DC14HAGJ525747                                                      | 07200         |                    |                     | \$0.00        | 240        | 2 75A 00       | 35155                  | 77.7                    | 2 75 A DO         | 354 55                | 7.77                       |
|         | 91     | SH4207             | 1B6MF3656MS327606                                                      | 10000         |                    |                     | \$0.00        | SAS        | 3 443 00       | 557 00                 | 6.18                    | 2,104.00          | 487 10                | 5.97                       |
| 19      | 06     | SH4212             | 1GBHC34K1LE232934                                                      | 10000         |                    |                     | \$0.00        | GAS        | 4,336.00       | 563.90                 | 7.69                    | 3,811.00          | 504.50                | 7.55                       |
| 19      | 88     | SH4219             | 1FDJF37G1JKA14207                                                      | 8800          |                    |                     | \$0.00        | GAS        | 671.00         | 14.00                  | 47.93                   | 671.00            | 14.00                 | 47.93                      |
| 19      | 92     | SH4229             | 1GBGC24KXNE196864                                                      | 7200          |                    |                     | \$0.00        | GAS        | 4,196.00       | 448.60                 | 9.35                    | 3,929.00          | 423.60                | 9.28                       |
| 19      | 92     | SH4230             | 1GBGC24K2NE196907                                                      | 8600          |                    |                     | \$0.00        | GAS        | 7,506.00       | 107.15                 | 70.05                   | 632.00            | 50.48                 | 12.52                      |
| 19      | 93     | SH5748             | 1GBJ7H1M7PJ105062                                                      | 24980         |                    |                     | \$0.00        | GAS        | 2,964.00       | 468.60                 | 6.33                    | 2,741.00          | 426.40                | 6.43                       |
| 19      | 93     | SH5946             | 1GCFC24K6PE196757                                                      | 7200          |                    |                     | \$0.00        | GAS        | 972.00         | 62.20                  | 15.63                   | 972.00            | 62.20                 | 15.63                      |
| 19      | 93     | SH5947             | 1GCFC24K1PE197377                                                      | 7200          |                    |                     | \$0.00        | GAS        | 2,026.00       | 101.60                 | 19.94                   | 2,026.00          | 101.60                | 19.94                      |
| 19      | 92     | SH7663             | 1GCFC24H3NE113402                                                      | 7200          |                    |                     | \$0.00        | GAS        | 1,291.00       | 67.16                  | 19.22                   | 1,291.00          | 67.16                 | 19.22                      |
| 20      | 8      | SH7741             | 1GBJC34RZYF475443                                                      | 7200          |                    |                     | \$0.00        | GAS        | 4,628.00       | 340.98                 | 13.57                   | 4,628.00          | 340.98                | 13.57                      |
| 19      | 93     | SH7750             | 1GCFC24H2PZ139484                                                      | 7200          |                    |                     | \$0.00        | GAS        | 10,749.00      | 884.33                 | 12.15                   | 9,601.00          | 785.68                | 12.22                      |
| 199     | 92     | SH7759             | 1GCFC24KXNE209619                                                      | 7200          |                    |                     | \$0.00        | GAS        | 1,260.00       | 100.30                 | 12.56                   | 1,260.00          | 100.30                | 12.56                      |
| 199     | 92     | SH7760             | 1GCFC24K4NE212144                                                      | 7200          |                    |                     | \$0.00        | GAS        | 3,208.00       | 211.21                 | 15.19                   | 3,208.00          | 211.21                | 15.19                      |
| 199     | 91     | SH7762             | 1GCFC24H6MZ120707                                                      | 7200          |                    |                     | \$0.00        | GAS        | 1,233.00       | 98.70                  | 12.49                   | 1,233.00          | 98.70                 | 12.49                      |
| 19      | 91     | SH7763             | 1GCFC24HXMZ120709                                                      | 7200          |                    |                     | \$0.00        | GAS        | 657.00         | 108.90                 | 6.03                    | 657.00            | 108.90                | 6.03                       |
| 19      | 91     | SH/764             | 1GCFC24H3MZ154880                                                      | 7200          |                    |                     | \$0.00        | GAS        | 3,550.00       | 207.40                 | 17.12                   | 3,550.00          | 207.40                | 17.12                      |
| 20      | - L    | C0//HC             | 1GCFC24H3MZ 153499                                                     | 1200          |                    |                     | \$0.00        | CAO<br>CAO | 169.00         | 23.00                  | 11.00                   | 169.00            | 23.00                 | 1.35                       |
| 195     | ~      | SH1113             | 1B7HU2410HS446401                                                      | 66UU          |                    |                     | \$0.UC        | GAG        | 2,616.00       | 219.80                 | 11.90                   | 2,616.00          | 219.80                | 11.90                      |

State of Hawaii Department of Education Vehicle Fuel Report FY 08
| Annual<br>Avg Fuel<br>Econ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.73                                    | 32.11                                    | 17.84                                   | 12.73                                   | 13.3/                                                                                | 18.16                                                           | 13.59                                   | 13.69                                   | 18.48                                       | 11.95                                   | 36.30                                           | 32.73                                   | 8.78                                            | 10.94                                       | 10.89                                       | 7.94                                        | 13.18                                   | 11.05                                   | 21.26                                     | 21.28                                      | 21.70                                      | 20.57                                      | 20.47                                      | 10.39                                   | 6.68                                     | 11.40                                   | 9.54                                        | 64.06                                   | 9.61                                      | 1.11                                      | 1/.01                                   | 9.74                                    | 22.19                                       | 12.94                                       | 19.27                                       | 21.07                                       | 76.92                                       | 28.77                                       | 31.08                                       | 23.99                                   | 9.96                                     | 7.98                                     | 16.36                                   | 10.11                                   | 12.63                                         | 49.45                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|
| Annual Fuel<br>Consum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.56                                    | 108.73                                   | 108.70                                  | 85.60                                   | 49.20<br>81.60                                                                       | 37.40                                                           | 37.60                                   | 157.30                                  | 79.38                                       | 100.90                                  | 94.10                                           | 191.60                                  | 511.88                                          | 219.10                                      | 176.70                                      | 64.58                                       | 343.20                                  | 413.17                                  | 326.67                                    | 54.98                                      | 164.13                                     | 9.48                                       | 18.95                                      | 573.89                                  | 73.00                                    | 513.60                                  | 613.80                                      | 519.97                                  | 161.30                                    | 21.50                                     | 166.28                                  | 499.91                                  | 89.87                                       | 41.72                                       | 20.96                                       | 142.51                                      | 93.94                                       | 113.18                                      | 327.74                                      | 193.47                                  | 16.17                                    | 110.75                                   | 46.40                                   | 819.10                                  | 24.15                                         | 15.53                                   |
| Annual<br>Mileage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,627.00                                 | 3,491.00                                 | 1,939.00                                | 1,090.00                                | 1 407 00                                                                             | 679.00                                                          | 511.00                                  | 2,154.00                                | 1,467.00                                    | 1,206.00                                | 3,416.00                                        | 6,271.00                                | 4,496.00                                        | 2,398.00                                    | 1,925.00                                    | 513.00                                      | 4,523.00                                | 4,566.00                                | 6,945.00                                  | 1,170.00                                   | 3,562.00                                   | 195.00                                     | 388.00                                     | 5,965.00                                | 488.00                                   | 5,854.00                                | 5,858.00                                    | 33,309.00                               | 1,550.00                                  | 212.00                                    | 2,828.00                                | 4,871.00                                | 1,994.00                                    | 540.00                                      | 404.00                                      | 3,002.00                                    | 7,226.00                                    | 3,256.00                                    | 10,186.00                                   | 4,642.00                                | 161.00                                   | 884.00                                   | 759.00                                  | 8,281.00                                | 305.00                                        | 768.00                                  |
| In-use Avg<br>Fuel Econ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.73                                    | 32.11                                    | 17.84                                   | 12.73                                   | 13.3/                                                                                | 18.16                                                           | 13.59                                   | 13.69                                   | 18.48                                       | 11.95                                   | 36.30                                           | 32.73                                   | 8.78                                            | 10.94                                       | 10.89                                       | 7.94                                        | 13.15                                   | 11.05                                   | 21.26                                     | 21.28                                      | 21.70                                      | 20.57                                      | 20.47                                      | 10.44                                   | 6.68                                     | 11.67                                   | 9.54                                        | 64.06                                   | 9.61                                      | 1.11                                      | 11/.01                                  | 9.74                                    | 22.19                                       | 12.94                                       | 19.27                                       | 21.07                                       | 76.92                                       | 28.77                                       | 31.08                                       | 23.99                                   | 96.6                                     | 7.98                                     | 14.73                                   | 10.13                                   | 12.63                                         | 49.45                                   |
| In-use Fuel<br>Consum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.56                                    | 108.73                                   | 108.70                                  | 85.60                                   | 49.20<br>e1 60                                                                       | 37.40                                                           | 37.60                                   | 157.30                                  | 79.38                                       | 100.90                                  | 94.10                                           | 191.60                                  | 511.88                                          | 278.40                                      | 176.70                                      | 64.58                                       | 391.20                                  | 413.17                                  | 326.67                                    | 54.98                                      | 164.13                                     | 9.48                                       | 18.95                                      | 640.21                                  | 73.00                                    | 576.60                                  | 613.80                                      | 519.97                                  | 161.30                                    | 27.50                                     | 166.28                                  | 499.91                                  | 89.87                                       | 41.72                                       | 20.96                                       | 142.51                                      | 93.94                                       | 113.18                                      | 327.74                                      | 193.47                                  | 16.17                                    | 110.75                                   | 67.20                                   | 919.10                                  | 24.15                                         | 15.53                                   |
| In-use Mileage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,627.00                                 | 3,491.00                                 | 1,939.00                                | 1,090.00                                | 658.00                                                                               | 679.00                                                          | 511.00                                  | 2,154.00                                | 1,467.00                                    | 1,206.00                                | 3,416.00                                        | 6,271.00                                | 4,496.00                                        | 3,046.00                                    | 1,925.00                                    | 513.00                                      | 5,144.00                                | 4,566.00                                | 6,945.00                                  | 1,170.00                                   | 3,562.00                                   | 195.00                                     | 388.00                                     | 6,684.00                                | 488.00                                   | 6,727.00                                | 5,858.00                                    | 33,309.00                               | 1,550.00                                  | 212.00                                    | 2,828.00                                | 4,871.00                                | 1,994.00                                    | 540.00                                      | 404.00                                      | 3,002.00                                    | 7,226.00                                    | 3,256.00                                    | 10,186.00                                   | 4,642.00                                | 161.00                                   | 884.00                                   | 00.066                                  | 9,311.00                                | 305.00                                        | 768.00                                  |
| Fuel Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GAS                                      | GAS                                      | GAS                                     | GAS                                     | GAS                                                                                  | GAS                                                             | GAS                                     | GAS                                     | GAS                                         | GAS                                     | GAS                                             | GAS                                     | GAS                                             | GAS                                         | GAS                                         | GAS                                         | GAS                                     | GAS                                     | GAS                                       | GAS                                        | GAS                                        | GAS                                        | GAS                                        | GAS                                     | GAS                                      | GAS                                     | GAS                                         | GAS                                     | GAS                                       | GAS                                       | GAS                                     | GAS                                     | GAS                                         | GAS                                         | GAS                                         | GAS                                         | GAS                                         | GAS                                         | GAS                                         | GAS                                     | GAS                                      | GAS                                      | GAS                                     | GAS                                     | GAS                                           | GAS                                     |
| Acq.<br>Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0.00                                   | \$0.00                                   | \$0.00                                  | \$0.00                                  | \$0.00                                                                               | \$0.00                                                          | \$0.00                                  | \$0.00                                  | \$0.00                                      | \$0.00                                  | \$0.00                                          | \$0.00                                  | \$0.00                                          | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                  | \$0.00                                  | \$0.00                                    | \$0.00                                     | \$0.00                                     | \$0.00                                     | \$0.00                                     | \$0.00                                  | \$0.00                                   | \$0.00                                  | \$0.00                                      | \$0.00                                  | \$0.00                                    | \$0.00                                    | \$0.00                                  | \$0.00                                  | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                      | \$0.00                                  | \$0.00                                   | \$0.00                                   | \$0.00                                  | \$0.00                                  | \$0.00                                        | \$0.00                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                         |                                         |                                                                                      |                                                                 |                                         |                                         |                                             |                                         |                                                 |                                         |                                                 |                                             |                                             |                                             |                                         |                                         |                                           |                                            |                                            |                                            |                                            |                                         |                                          |                                         |                                             |                                         |                                           |                                           |                                         |                                         |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                         |                                          |                                          |                                         | _                                       |                                               |                                         |
| EPA<br>City<br>Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                          |                                         |                                         |                                                                                      |                                                                 |                                         |                                         |                                             |                                         |                                                 |                                         |                                                 |                                             |                                             |                                             |                                         |                                         |                                           |                                            |                                            |                                            |                                            |                                         |                                          |                                         |                                             |                                         |                                           |                                           |                                         |                                         |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                         |                                          |                                          |                                         |                                         | 16                                            |                                         |
| EPA EPA<br>Hwy City<br>Fuel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                          |                                         |                                         |                                                                                      |                                                                 |                                         |                                         |                                             |                                         |                                                 |                                         |                                                 |                                             |                                             |                                             |                                         |                                         |                                           |                                            |                                            |                                            |                                            |                                         |                                          |                                         |                                             |                                         |                                           |                                           |                                         |                                         |                                             |                                             |                                             |                                             |                                             |                                             |                                             |                                         |                                          |                                          |                                         |                                         | 22 16                                         |                                         |
| EPA EPA<br>GVWR Hwy City<br>Fuel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2500                                     | 2500                                     | 7200                                    | 7200                                    | 7200                                                                                 | 7200                                                            | 7200                                    | 7200                                    | 2470                                        | 7200                                    | 4695                                            | 4695                                    | 8800                                            | 5258                                        | 7200                                        | 7200                                        | 7200                                    | 7200                                    | 2830                                      | 2830                                       | 2830                                       | 2830                                       | 2830                                       | 8600                                    | 19660                                    | 8600                                    | 7200                                        | 6000                                    | 10000                                     | 10000                                     | /200                                    | 8600                                    | 2/00                                        | 2/00                                        | 2/00                                        | 2700                                        | 2700                                        | 2700                                        | 2700                                        | 7200                                    | 10100                                    | 10100                                    | 5600                                    | 5060                                    | 7200 22 16                                    | 2160                                    |
| VIN GVWR Hwy City<br>Fuel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1Y1SK5265SZ101563 2500                   | 1Y1SK5267SZ101581 2500                   | 1GCFC24H8SE283332 7200                  | 1GCFC24H4SE284641 7200                  | 1GCFC24MX1E190844 /200                                                               | 1GCFC24M8TE192804 7200                                          | 1GCFC24M9TE189538 7200                  | 1GCFC24M1TE191770 7200                  | 1G1JC524XV7123532 2470                      | 1GCFC24M3VE125997 7200                  | 1FACP52U1PG260744 4695                          | 1FALP5215PG266231 4695                  | 1GCFC24H9MZ162191 8800                          | 1G1BL537XPR133210 5258                      | 1GCFC24M5WZ127387 7200                      | 1GBHC34R3WF015798 7200                      | 1GCFC24H1MZ162749 7200                  | 1GCFC24H6MZ161497 7200                  | KMJF24M3WU699195 2830                     | KMHJF24M8WU697555 2830                     | KMHJF24M2WU691251 2830                     | KMHJF24M4WU696113 2830                     | KMHJF24M7WU691259 2830                     | 2B4HB25Y4RK548003 8600                  | 1FDNK64P9MVA06555 19660                  | 1GCFC24H6MZ163394 8600                  | 1GCFC24H1NE159682 7200                      | 1GCFCZ4H4MZ1/5348 6000                  | 1GDHC34K1ME5532840 10000                  | 1GBHC34F OX F014518 10000                 | 1GCGC24R5XR/16263 /200                  | 1GCGG35K5PF340970 8600                  | 3G1JC5240YS118569 2/00                      | 3G1JC5243YS118Z12 2/00                      | 3G1JC5246YS11/829 2/00                      | 3G1JC5240YS118491 2700                      | 3G1JC5243YS117433 2700                      | 3G1JC5249YS118117 2700                      | 3G1JC5245YS118101 2700                      | 1GBHC34R9YF409552 7200                  | 1B7MM3656PS268169 10100                  | 1B7ME3653NS646717 10100                  | 1GCDC14Z2RZ236018 5600                  | 1GCFC24H3PZ139347 5060                  | 1GCFC24Z5RZ245617 7200 22 16                  | JTDBT123810110695 2160                  |
| License VIN GVWR Hwy City<br>Plate # VIN GVWR Hwy City<br>Fuel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SH8077 1Y1SK5265SZ101563 2500            | SH8078 1Y1SK5267SZ101581 2500            | SH8158 1GCFC24H8SE283332 7200           | SH8159 1GCFC24H4SE284641 7200           | SH8289 1GCFC24MX1E190844 7200<br>CL0200 1CCEC24M2TE100868 7200                       | SH0230 1GCLC24M31E103000 / 200<br>SH8291 1GCFC24M8TE192804 7200 | SH8292 1GCFC24M9TE189538 7200           | SH8293 1GCFC24M1TE191770 7200           | SH8411 1G1JC524XV7123532 2470               | SH8465 1GCFC24M3VE125997 7200           | SH8633 1FACP52U1PG260744 4695                   | SH8634 1FALP5215PG266231 4695           | SH8638 1GCFC24H9MZ162191 8800                   | SH8667 1G1BL537XPR133210 5258               | SH8778 1GCFC24M5WZ127387 7200               | SH8864 1GBHC34R3WF015798 7200               | SH8870 1GCFC24H1MZ162749 7200           | SH8871 1GCFC24H6MZ161497 7200           | SH8961 KMJF24M3WU699195 2830              | SH8965 KMHJF24M8WU697555 2830              | SH8967 KMHJF24M2WU691251 2830              | SH8969 KMHJF24M4WU696113 2830              | SH8970 KMHJF24M7WU691259 2830              | SH8978 2B4HB25Y4RK548003 8600           | SH8980 1FDNK64P9MVA06555 19660           | SH9042 1GCFC24H6MZ163394 8600           | SH9043 1GCFC24H1NE159682 7200               | SH9044 1GCFCZ4H4MZ1/5348 6000           | SH9069 1GDHC34K1ME5532840 10000           | SH9301 1GBHC34FOXF014518 10000            | SH9458 1GCGC24R5XR/16263 /200           | SH9507 1GCGG35K5PF340970 8600           | SH952/ 3G1JC5240YS118569 2/00               | SH9528 3G1JC5243YS118212 2/00               | SH9529 3G1JC5246YS11/829 2/00               | SH9531 3G1JC5240YS118491 2700               | SH9534 3G1JC5243YS117433 2700               | SH9535 3G1JC5249YS118117 2700               | SH9537 3G1JC5245YS118101 2700               | SH9559 1GBHC34R9YF409552 7200           | SH9616 1B7MM3656PS268169 10100           | SH9653 1B7ME3653NS646717 10100           | SH9769 1GCDC14Z2RZ236018 5600           | SH9770 1GCFC24H3PZ139347 5060           | SH9771 1GCFC24Z5RZ245617 7200 22 16           | SH9804 JTDBT123810110695 2160           |
| Year License VIN GVWR Hwy City Plate # VIN Fuel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1995 SH8077 1Y1SK5265SZ101563 2500       | 1995 SH8078 1Y1SK5267SZ101581 2500       | 1995 SH8158 1GCFC24H8SE283332 7200      | 1995 SH8159 1GCFC24H4SE284641 7200      | 1996 SH8289 1GCFC24MX1E190844 7200<br>1006 SH8200 1CCFC24M2TE1908889 7200            | 1996 SH8291 1GCFC24M8TE192804 7200                              | 1996 SH8292 1GCFC24M9TE189538 7200      | 1996 SH8293 1GCFC24M1TE191770 7200      | 1996 SH8411 1G1JC524XV7123532 2470          | 1996 SH8465 1GCFC24M3VE125997 7200      | 1993 SH8633 1FACP52U1PG260744 4695              | 1993 SH8634 1FALP5215PG266231 4695      | 1991 SH8638 1GCFC24H9MZ162191 8800              | 1993 SH8667 1G1BL537XPR133210 5258          | 1998 SH8778 1GCFC24M5WZ127387 7200          | 1998 SH8864 1GBHC34R3WF015798 7200          | 1991 SH8870 1GCFC24H1MZ162749 7200      | 1991 SH8871 1GCFC24H6MZ161497 7200      | 1998 SH8961 KMJF24M3WU699195 2830         | 1998 SH8965 KMHJF24M8WU697555 2830         | 1998 SH8967 KMHJF24M2WU691251 2830         | 1998 SH8969 KMHJF24M4WU696113 2830         | 1998 SH8970 KMHJF24M7WU691259 2830         | 1994 SH8978 2B4HB25Y4RK548003 8600      | 1991 SH8980 1FDNK64P9MVA06555 19660      | 1991 SH9042 1GCFC24H6MZ163394 8600      | 1992 SH9043 1GCFC24H1NE159682 7200          | 1991 SH9044 1GCFC24H4MZ1/5348 6000      | 1991 SH9069 1GDHC34K1ME5532840 10000      | 1999 SH9301 1GBHC34FOXF014518 10000       | 1999 SH9458 1GCGC24K5XK/16263 /200      | 1993 SH9507 1GCGG35K5PF340970 8600      | 2000 SH952/ 3G1JC5240YS118569 2700          | 2000 SH9528 3G1JC5243YS118212 2700          | 2000 SH9529 3G1JC5246YS11/829 2/00          | 2000 SH9531 3G1JC5240YS118491 2700          | 2000 SH9534 3G1JC5243YS117433 2700          | 2000 SH9535 3G1JC5249YS118117 2700          | 2000 SH9537 3G1JC5245YS118101 2700          | 2000 SH9559 1GBHC34R9YF409552 7200      | 1993 SH9616 1B7MM3656PS268169 10100      | 1992 SH9653 1B7ME3653NS646717 10100      | 1994 SH9769 1GCDC14Z2RZ236018 5600      | 1993 SH9770 1GCFC24H3PZ139347 5060      | 1994 SH9771 1GCFC24Z5RZ245617 7200 22 16      | 2001 SH9804 JTDBT123810110695 2160      |
| Model         Year         License         VIN         EPA         EPA | Prizm 1995 SH8077 1Y1SK5265SZ101563 2500 | Prizm 1995 SH8078 1Y1SK5267SZ101581 2500 | XXXX 1995 SH8158 1GCFC24H8SE283332 7200 | XXXX 1995 SH8159 1GCFC24H4SE284641 7200 | XXXX 1996 SH8289 1GCFC24MX1E190844 /200<br>VVVV 1006 SH8260 1CCFC24MA3TE1808888 7200 | XXX 1996 SH8291 1GCFC24M8TE192804 7200                          | XXXX 1996 SH8292 1GCFC24M9TE189538 7200 | XXXX 1996 SH8293 1GCFC24M1TE191770 7200 | Cavalier 1996 SH8411 1G1JC524XV7123532 2470 | XXXX 1996 SH8465 1GCFC24M3VE125997 7200 | XXXX   1993   SH8633   1FACP52U1PG260744   4695 | XXXX 1993 SH8634 1FALP5215PG266231 4695 | XXXX   1991   SH8638   1GCFC24H9MZ162191   8800 | XXXX  1993  SH8667  1G1BL537XPR133210  5258 | XXXX  1998  SH8778  1GCFC24M5WZ127387  7200 | XXXX  1998  SH8864  1GBHC34R3WF015798  7200 | XXXX 1991 SH8870 1GCFC24H1MZ162749 7200 | XXXX 1991 SH8871 1GCFC24H6MZ161497 7200 | Elantra 1998 SH8961 KMJF24M3WU699195 2830 | Elantra 1998 SH8965 KMHJF24M8WU697555 2830 | Elantra 1998 SH8967 KMHJF24M2WU691251 2830 | Elantra 1998 SH8969 KMHJF24M4WU696113 2830 | Elantra 1998 SH8970 KMHJF24M7WU691259 2830 | XXXX 1994 SH8978 2B4HB25Y4RK548003 8600 | XXXX 1991 SH8980 1FDNK64P9MVA06555 19660 | XXXX 1991 SH9042 1GCFC24H6MZ163394 8600 | XXXX  1992  SH9043  1GCFC24H1NE159682  7200 | XXXX 1991 SH9044 1GCFC24H4MZ1/5348 6000 | XXXX 1991 SH9069 1GDHC34K1ME5532840 10000 | XXXX 1999 SH9301 1GBHC34F-0XF014518 10000 | XXXX 1999 SH9458 1GCGC24K5XK/16263 /200 | XXXX 1993 SH9507 1GCGG35K5PF340970 8600 | Cavaller 2000 SH952/ 3G1JC5240YS118569 2700 | Cavaller 2000 SH9528 3G1JC5243YS118212 2700 | Cavaller 2000 SH9529 3G1JC5246YS11/829 2/00 | Cavalier 2000 SH9531 3G1JC5240YS118491 2700 | Cavalier 2000 SH9534 3G1JC5243YS117433 2700 | Cavalier 2000 SH9535 3G1JC5249YS118117 2700 | Cavalier 2000 SH9537 3G1JC5245YS118101 2700 | XXXX 2000 SH9559 1GBHC34R9YF409552 7200 | XXXX 1993 SH9616 1B7MM3656PS268169 10100 | XXXX 1992 SH9653 1B7ME3653NS646717 10100 | XXXX 1994 SH9769 1GCDC14Z2RZ236018 5600 | XXXX 1993 SH9770 1GCFC24H3PZ139347 5060 | XXXX 1994 SH9771 1GCFC24Z5RZ245617 7200 22 16 | Echo 2001 SH9804 JTDBT123810110695 2160 |

| Annual<br>Avg Fuel<br>Econ                                                                                                               | 35.24                                   | 31.10                                   | 31.86                                   | 26.77                                    | 32.10                                  | 27.45                                   | 30.19                                   | 11.13                                   | 14.80                                     | 11.02                                   | 15.95                                                                               | 14.61                                                                              | 14.68                                   | 13.86                                   | 19.57                                   | 11.48                                      | 18.40                                                                                                                                                           | 22.40<br>23.36                                                                                                                                             | 17.58                                     | 10.80                                   | 11.21                                   | 11.53                                   | 11.35                                   | 72.14<br>21.14                                                                      | 11.03                                   | 21.28                                    | 23.98                                      | 16.46                                     | 11.96                                   | 15.43                                   | 8.83                                     | 90.01<br>90 0                                                                       | 0.00                                                                                | 17.60                                  | 12.85                                   | 11.08                                   | 13.43                                   | -66.17                                  | 8.96                                        | 18.90                                   | 18.68                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|
| Annual Fuel<br>Consum                                                                                                                    | 212.38                                  | 81.09                                   | 285.27                                  | 91.22                                    | 52.52                                  | 109.05                                  | 226.07                                  | 479.54                                  | 211.50                                    | 482.70                                  | 029.70                                                                              | 166.50                                                                             | 575.66                                  | 176.60                                  | 46.40                                   | 288.54                                     | 143.80                                                                                                                                                          | 183.10                                                                                                                                                     | 102.00                                    | 690.80                                  | 624.70                                  | 562.42                                  | 401.25                                  | 663.8U<br>45.37                                                                     | 355.50                                  | 29.94                                    | 75.34                                      | 28.79                                     | 493.57                                  | 502.58                                  | 895.11                                   | 309.43                                                                              | 308.06                                                                              | 86.00                                  | 772.40                                  | 19.14                                   | 66.70                                   | 458.23                                  | 828.30                                      | 124.00                                  | 167.00                                  |
| Annual<br>Mileage                                                                                                                        | 7,484.00                                | 2,522.00                                | 9,088.00                                | 2,442.00                                 | 1,686.00                               | 2,993.00                                | 6,824.00                                | 5,339.00                                | 3,130.00                                  | 5,320.00                                | 10,044.00<br>5 1 00 00                                                              | 2,433,00                                                                           | 8,451.00                                | 2,448.00                                | 908.00                                  | 3,311.00                                   | 2,646.00                                                                                                                                                        | 4 278 00                                                                                                                                                   | 1,793.00                                  | 7,463.00                                | 7,000.00                                | 6,482.00                                | 4,555.00                                | 8,060.00                                                                            | 3,921.00                                | 637.00                                   | 1,807.00                                   | 474.00                                    | 5,904.00                                | 7,755.00                                | 7,901.00                                 | 3,/9/.UU<br>5 446 00                                                                | 2,410.00<br>4 709 00                                                                | 1.514.00                               | 9,922.00                                | 212.00                                  | 896.00                                  | -30,322.00                              | 7,422.00                                    | 2,343.00                                | 3,120.00                                |
| In-use Avg<br>Fuel Econ                                                                                                                  | 35.24                                   | 31.10                                   | 31.86                                   | 26.77                                    | 32.10                                  | 27.45                                   | 30.19                                   | 10.99                                   | 14.79                                     | 11.11                                   | 10.01                                                                               | 14.46                                                                              | 14.71                                   | 13.66                                   | 19.57                                   | 11.91                                      | 18.61                                                                                                                                                           | 21.00                                                                                                                                                      | 17.80                                     | 10.80                                   | 11.37                                   | 11.60                                   | 12.09                                   | 72.12                                                                               | 10.87                                   | 21.28                                    | 23.98                                      | 16.46                                     | 12.29                                   | 15.43                                   | 9.05                                     | 10.49                                                                               | 12 59                                                                               | 17.60                                  | 12.88                                   | 11.08                                   | 13.43                                   | -60.34                                  | 8.99                                        | 19.30                                   | 18.68                                   |
| In-use Fuel<br>Consum.                                                                                                                   | 212.38                                  | 81.09                                   | 285.27                                  | 91.22                                    | 52.52                                  | 109.05                                  | 226.07                                  | 503.02                                  | 235.90                                    | 528.70                                  | 704.40                                                                              | 203.60                                                                             | 622.64                                  | 204.90                                  | 46.40                                   | 342.52                                     | 1/4.30                                                                                                                                                          | 00.78<br>00101                                                                                                                                             | 107.40                                    | 690.80                                  | 744.70                                  | 601.51                                  | 428.63                                  | 153.90                                                                              | 388.55                                  | 29.94                                    | 75.34                                      | 28.79                                     | 542.46                                  | 502.58                                  | 946.55                                   | 384.60                                                                              | 424.95                                                                              | 86.00                                  | 853.50                                  | 19.14                                   | 66.70                                   | 496.67                                  | 902.60                                      | 157.50                                  | 167.00                                  |
| In-use Mileage                                                                                                                           | 7,484.00                                | 2,522.00                                | 9,088.00                                | 2,442.00                                 | 1,686.00                               | 2,993.00                                | 6,824.00                                | 5,529.00                                | 3,488.00                                  | 5,874.00                                | 11,112.00                                                                           | 2,945,00                                                                           | 9,156.00                                | 2,799.00                                | 908.00                                  | 4,081.00                                   | 3,243.00                                                                                                                                                        | 2,101.00                                                                                                                                                   | 1,912.00                                  | 7,463.00                                | 8,470.00                                | 6,980.00                                | 5,183.00                                | 9,135.00                                                                            | 4,224.00                                | 637.00                                   | 1,807.00                                   | 474.00                                    | 6,669.00                                | 7,755.00                                | 8,564.00                                 | 4,033.00<br>F 040.00                                                                | 5 351 00                                                                            | 1.514.00                               | 10,990.00                               | 212.00                                  | 896.00                                  | -29,970.00                              | 8,111.00                                    | 3,040.00                                | 3,120.00                                |
| Fuel Type                                                                                                                                | GAS                                     | GAS                                     | GAS                                     | GAS                                      | GAS                                    | GAS                                     | GAS                                     | GAS                                     | GAS                                       | GAS                                     | GAC                                                                                 | GAS                                                                                | GAS                                     | GAS                                     | GAS                                     | GAS                                        | GAS                                                                                                                                                             | CAC<br>CAC                                                                                                                                                 | GAS                                       | GAS                                     | GAS                                     | GAS                                     | GAS                                     | GAS                                                                                 | GAS                                     | GAS                                      | GAS                                        | GAS                                       | GAS                                     | GAS                                     | GAS                                      | GAU<br>CAO                                                                          | SAS<br>SAS                                                                          | GAS                                    | GAS                                     | GAS                                     | GAS                                     | GAS                                     | GAS                                         | GAS                                     | GAS                                     |
| Acq.<br>Cost                                                                                                                             | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                   | \$0.00                                 | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                    | \$0.00                                  | \$0.00                                                                              | 00.0¢                                                                              | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                     | \$0.00                                                                                                                                                          | 00.0¢                                                                                                                                                      | \$0.00                                    | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                                                              | \$0.00                                  | \$0.00                                   | \$0.00                                     | \$0.00                                    | \$0.00                                  | \$0.00                                  | \$0.00                                   | \$0.00                                                                              | 00.04                                                                               | \$0.00                                 | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                      | \$0.00                                  | \$0.00                                  |
| EPA<br>City<br>Fuel                                                                                                                      |                                         |                                         |                                         |                                          |                                        |                                         |                                         |                                         |                                           |                                         |                                                                                     |                                                                                    |                                         |                                         | _                                       | 16                                         |                                                                                                                                                                 |                                                                                                                                                            |                                           |                                         |                                         |                                         |                                         |                                                                                     |                                         |                                          |                                            |                                           |                                         |                                         |                                          |                                                                                     |                                                                                     |                                        |                                         |                                         |                                         |                                         |                                             |                                         |                                         |
| PA<br>wy<br>Jel                                                                                                                          |                                         |                                         |                                         |                                          |                                        |                                         |                                         |                                         |                                           |                                         |                                                                                     |                                                                                    |                                         |                                         |                                         |                                            |                                                                                                                                                                 |                                                                                                                                                            |                                           |                                         |                                         |                                         |                                         |                                                                                     |                                         |                                          |                                            |                                           |                                         |                                         |                                          |                                                                                     |                                                                                     |                                        |                                         |                                         |                                         |                                         |                                             |                                         |                                         |
| ш±ш                                                                                                                                      |                                         |                                         |                                         |                                          |                                        |                                         |                                         |                                         |                                           |                                         |                                                                                     |                                                                                    |                                         |                                         |                                         | 22                                         |                                                                                                                                                                 |                                                                                                                                                            |                                           |                                         |                                         |                                         |                                         |                                                                                     |                                         |                                          |                                            |                                           |                                         |                                         |                                          |                                                                                     |                                                                                     |                                        |                                         |                                         |                                         |                                         |                                             |                                         |                                         |
| GVWR H                                                                                                                                   | 2160                                    | 2160                                    | 2160                                    | 2160                                     | 2160                                   | 2160                                    | 2160                                    | 7200                                    | 6150                                      | 6000                                    | 5300                                                                                | 5600                                                                               | 6000                                    | 5700                                    | 5300                                    | 7200 22                                    | 4722                                                                                                                                                            | 4122                                                                                                                                                       | 4722                                      | 8600                                    | 8600                                    | 8600                                    | 8600                                    | 4900                                                                                | 8600                                    | 2700                                     | 2430                                       | 3300                                      | 8800                                    | 6250                                    | 10000                                    | 8000                                                                                | 7200                                                                                | 7200                                   | 7200                                    | 7200                                    | 7200                                    | 7200                                    | 8600                                        | 4722                                    | 4722                                    |
| VIN GVWR H                                                                                                                               | JTDBT123410110029 2160                  | JTDBT123810110101 2160                  | JTDBT123X10110617 2160                  | JTDBT123510110492 2160                   | JTDBT123110110473 2160                 | JTDBT123610110713 2160                  | JTDBT123910110480 2160                  | 1GCFC24H1RZ266816 7200                  | 1B7HL26X2TS682625 6150                    | 1FTDF172XVKD55847 6000                  | 1GCCS1429K822655/ 5300                                                              | 1GCDS19ZUN6Z20101 3300<br>1GCDC14Z9RZ223993 5600                                   | 1GCEC14Z2RZ267791 6000                  | 1GNDM15Z6RB232081 5700                  | 1GCCS14Z9R8225523 5300                  | 1GCFC24ZXRZ245435 7200 22                  | 1FALP224VG223165 4722                                                                                                                                           | 1FALF3220VG223103 4722<br>1FAI P5226VG223166 4722                                                                                                          | 1FALP5222VG223164 4722                    | 1GCGG35KOPF340875 8600                  | 1GFGG35K6PF240704 8600                  | 1GBGC24KORE260917 8600                  | 1GBGC24K3RE261673 8600                  | 1GCFC24H8PZ13/190 /200<br>1GCCS1423R8226201 4900                                    | 1GCGG35K0PF339354 8600                  | 1FAFP33PX2W107773 2700                   | 1NXBR12E81Z493686 2430                     | 1FAFP5326YA142204 3300                    | 1GBHC34K2RE313546 8800                  | 1FTEF15Y5SLB50325 6250                  | 1GBHC34K5RE176621 10000                  | 1GBGCZ4K6KE3U2619 8600<br>1CDUC34K3DE176073 10000                                   | 1GCFC24H6R7267679 7200                                                              | 1GCFC24HRZ267583 7200                  | 1GCFC24H8RZ266579 7200                  | 1GCFC24H8RZ268123 7200                  | 1GTFC24H6RE550414 7200                  | 1GTFC24H3RE549494 7200                  | 1GBHC34KXRE177120 8600                      | 1FAFP5222WG216116 4722                  | 1FAFP5226WG216118 4722                  |
| License VIN GVWR H                                                                                                                       | SH9806 JTDBT123410110029 2160           | SH9808 JTDBT123810110101 2160           | SH9809 JTDBT123X10110617 2160           | SH9810 JTDBT123510110492 2160            | SH9812 JTDBT123110110473 2160          | SH9814 JTDBT123610110713 2160           | SH9815 JTDBT123910110480 2160           | SH9841 1GCFC24H1RZ266816 7200           | SH9842 1B7HL26X2TS682625 6150             | SH9843 1FTDF172XVKD55847 6000           | SH9921 1GCCS1429K822655/ 5300<br>SU0022 1CCCS1670B9226181 5300                      | SH9922 1GCCS1920K0220101 3300<br>SH9923 1GCDC14Z9RZ223993 5600                     | SH9928 1GCEC14Z2RZ267791 6000           | SH9977 1GNDM15Z6RB232081 5700           | SHA120 1GCCS14Z9R8225523 5300           | SHA121 1GCFC24ZXRZ245435 7200 22           | SHA138 1FALP224VG223165 41/22<br>SUA153 1EAL DE220//C223165 47/22                                                                                               | SHA133   IFALF3220VG223103   4/ 22<br>SHA174   1EA  D5226VG223166   4722                                                                                   | SHA175 1FALP5222VG223164 4722             | SHA220 1GCGG35KOPF340875 8600           | SHA221 1GFGG35K6PF240704 8600           | SHA222 1GBGC24KORE260917 8600           | SHA229 1GBGC24K3RE261673 8600           | SHA249 1GCFC24H8PZ13/190 /200<br>SHA284 1GCCS1423R8226201 4900                      | SHA297 1GCGG35K0PF339354 8600           | SHA300 1FAFP33PX2W107773 2700            | SHA328 1NXBR12E81Z493686 2430              | SHA329 1FAFP5326YA142204 3300             | SHA333 1GBHC34K2RE313546 8800           | SHA334 1FTEF15Y5SLB50325 6250           | SHA337 1GBHC34K5RE176621 10000           | SHA338 1GBGCZ4K6KE3UZ619 8600<br>SUA330 1CBUC34K3DE176073 10000                     | SHA330 1GDFC34N3NE170973 10000<br>SHA340 1GCFC24H6R7267679 7200                     | SH344 1GCFC24HRZ267583 7200            | SHA352 1GCFC24H8RZ266579 7200           | SHA367 1GCFC24H8RZ268123 7200           | SHA368 1GTFC24H6RE550414 7200           | SHA383 1GTFC24H3RE549494 7200           | SHA384 1GBHC34KXRE177120 8600               | SHA447 1FAFP5222WG216116 4722           | SHA449 1FAFP5226WG216118 4722           |
| Year         License         VIN         E           Plate #         VIN         GVWR         H                                          | 2001 SH9806 JTDBT123410110029 2160      | 2001 SH9808 JTDBT123810110101 2160      | 2001 SH9809 JTDBT123X10110617 2160      | 2001 SH9810 JTDBT123510110492 2160       | 2001 SH9812 JTDBT123110110473 2160     | 2001 SH9814 JTDBT123610110713 2160      | 2001 SH9815 JTDBT123910110480 2160      | 1994 SH9841 1GCFC24H1RZ266816 7200      | 1996 SH9842 1B7HL26X2TS682625 6150        | 1997 SH9843 1FTDF172XVKD55847 6000      | 1994 SH9921 1GCCS1429K8Z2655/ 5300<br>1004 SH0022 1/CCCS1020B9226194 5200           | 1994 SH9922 1GCCS19Z0K0Z20101 3300<br>1994 SH9923 1GCDC14Z9RZ223993 5600           | 1994 SH9928 1GCEC14Z2RZ267791 6000      | 1994 SH9977 1GNDM15Z6RB232081 5700      | 1994 SHA120 1GCCS14Z9R8225523 5300      | 1994 SHA121 1GCFC24ZXRZ245435 7200 22      | 199/ SHA138 1FALP224VG223165 4/22<br>1007 SU10152 1EALD5220VC223163 4722                                                                                        | 199/ 300133 115425200525103 4722<br>1997 SH4174 1541 552567673166 4722                                                                                     | 1997 SHA175 1FALP5222VG223164 4722        | 1993 SHA220 1GCGG35KOPF340875 8600      | 1993 SHA221 1GFGG35K6PF240704 8600      | 1994 SHA222 1GBGC24KORE260917 8600      | 1994 SHA229 1GBGC24K3RE261673 8600      | 1993 SHA249 1GCFC24H8PZ13/190 /200<br>1994 SHA284 1GCCS1423R8226201 4900            | 1993 SHA297 1GCGG35K0PF339354 8600      | 2002 SHA300 1FAFP33PX2W107773 2700       | 2001 SHA328 1NXBR12E81Z493686 2430         | 2000 SHA329 1FAFP5326YA142204 3300        | 1994 SHA333 1GBHC34K2RE313546 8800      | 1995 SHA334 1FTEF15Y5SLB50325 6250      | 1994 SHA337 1GBHC34K5RE176621 10000      | 1994 2014338 1GBGCZ4K6KE302619 8600<br>1004 2014330 1CBUC34K3E172673 10000          | 1994 SHA339 1GBHC34A3KE170973 10000<br>1994 SHA340 1GCFC24H6R72679 7200             | 1994 SHA344 1GCFC24HRZ267583 7200      | 1994 SHA352 1GCFC24H8RZ266579 7200      | 1994 SHA367 1GCFC24H8RZ268123 7200      | 1994 SHA368 1GTFC24H6RE550414 7200      | 1994 SHA383 1GTFC24H3RE549494 7200      | 1994 SHA384 1GBHC34KXRE177120 8600          | 1998 SHA447 1FAFP5222WG216116 4722      | 1998 SHA449 1FAFP5226WG216118 4722      |
| Model         Year         License         VIN         GVWR         H           Plate #         Plate #         FI         FI         FI | Echo 2001 SH9806 JTDBT123410110029 2160 | Echo 2001 SH9808 JTDBT123810110101 2160 | Echo 2001 SH9809 JTDBT123X10110617 2160 | Lecho 2001 SH9810 JTDBT123510110492 2160 | Echo 2001 SH9812 JTDBT12310110300 2100 | Echo 2001 SH9814 JTDBT123610110713 2160 | Echo 2001 SH9815 JTDBT123910110480 2160 | XXXX 1994 SH9841 1GCFC24H1RZ266816 7200 | Dakota 1996 SH9842 1B7HL26X2TS682625 6150 | XXXX 1997 SH9843 1FTDF172XVKD55847 6000 | S-10 1994 SH9921 1GCCS1429K8Z26557 5300<br>C 10 1004 CU0022 1/CCCS1020B0226551 5300 | 3-10 1994 SH9922 19CCS1920K0220101 3300<br>XXXX 1994 SH9923 1GCDC14Z9RZ223993 5600 | XXXX 1994 SH9928 1GCEC14Z2RZ267791 6000 | XXXX 1994 SH9977 1GNDM15Z6RB232081 5700 | XXXX 1994 SHA120 1GCCS14Z9R8225523 5300 | XXXX 1994 SHA121 1GCFC24ZXRZ245435 7200 22 | Iaurus         199/         SHA138         1FALP224VG223165         4/22           Tourus         4007         SUA153         4 EAI DE220//C002463         4722 | Taurus         199/         STA133         FALP3ZOVGZ23103         4/22           Taurus         1007         SHA174         1FALP32SUG273466         4723 | Taurus 1997 SHA175 1FALP5222VG223164 4722 | XXXX 1993 SHA220 1GCGG35KOPF340875 8600 | XXXX 1993 SHA221 1GFGG35K6PF240704 8600 | XXXX 1994 SHA222 1GBGC24KORE260917 8600 | XXXX 1994 SHA229 1GBGC24K3RE261673 8600 | XXXX 1993 SHAZ49 1GCFCZ4H8PZ13/190 //200<br>S-10 1994 SHA284 1GCCS1423R8226201 4900 | XXXX 1993 SHA297 1GCGG35K0PF339354 8600 | Focus 2002 SHA300 1FAFP33PX2W107773 2700 | Corolla 2001 SHA328 1NXBR12E81Z493686 2430 | Taurus 2000 SHA329 1FAFP5326YA142204 3300 | XXXX 1994 SHA333 1GBHC34K2RE313546 8800 | XXXX 1995 SHA334 1FTEF15Y5SLB50325 6250 | XXXX 1994 SHA337 1GBHC34K5RE176621 10000 | XXXX 1994 SHA338 1GBGCZ4K6KE302619 8600<br>VVVV 1001 EUA330 1CBUC34K3EE17E073 10000 | XXXX 1994 31A339 1GBHC34N3KE170973 10000<br>XXXX 1994 SHA340 1GCFC34H6R7367679 7200 | XXXX 1994 SHA344 1GCFC24HRZ267583 7200 | XXXX 1994 SHA352 1GCFC24H8RZ266579 7200 | XXXX 1994 SHA367 1GCFC24H8RZ268123 7200 | XXXX 1994 SHA368 1GTFC24H6RE550414 7200 | XXXX 1994 SHA383 1GTFC24H3RE549494 7200 | XXXX  1994  SHA384  1GBHC34KXRE177120  8600 | XXXX 1998 SHA447 1FAFP5222WG216116 4722 | XXXX 1998 SHA449 1FAFP5226WG216118 4722 |

| Annual<br>Avg Fuel<br>Econ           | 12.60                                   | 11.18                                   | 11.70                                   | 8.73                                     | 7 14                                                                               | 13.75                                    | 10.65                                    | 9.64                                    | 8.87                                     | 5.08                                     | 9.52                                     | 9.67                                    | 9.97                                     | 21.99                                           | 9.09                                        | 19.86                                           | 20.83                                       | 22.87                                   | 10.36                                   | 22.50                                     | 25.90                                     | 27.01                                     | 24.78                                     | 16.01<br>32 47                                                                         | 17.51                                      | 10.61                                   | 11.05                                   | 11.01                                   | 11.94                                   | 10.21                                         | 11.05                                         | 9.90                                    | 9.58                                     | 16.09                                   | 12.40                                   | 9.01                                    | 12.59                                   | 12.74                                           | 18.45                                    | 19.73                                    | 20.24                                    | 14.40                                    | 18.54                                    | 24.56<br>26.10                                                                      |
|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|
| nnual Fuel<br>Consum                 | 546.26                                  | 720.47                                  | 301.50                                  | 250.53                                   | 920.00<br>200.12                                                                   | 102.50                                   | 620.49                                   | 593.00                                  | 195.47                                   | 19.10                                    | 899.43                                   | 542.30                                  | 425.32                                   | 257.40                                          | 586.90                                      | 97.10                                           | 122.03                                      | 20.77                                   | 1,007.30                                | 307.95                                    | 78.20                                     | 471.62                                    | 166.91                                    | 62.15<br>230.43                                                                        | 12.51                                      | 640.30                                  | 560.90                                  | 565.20                                  | 658.81                                  | 505.54                                        | 465.81                                        | 700.20                                  | 457.53                                   | 46.50                                   | 195.20                                  | 694.94                                  | 574.71                                  | 201.72                                          | 126.70                                   | 192.66                                   | 284.55                                   | 160.38                                   | 213.88                                   | 729.79<br>340.97                                                                    |
| Annual /                             | 6,882.00                                | 8,054.00                                | 3,527.00                                | 2,187.00                                 | 0,333.00<br>2 071 00                                                               | 1.409.00                                 | 6,606.00                                 | 5,719.00                                | 1,734.00                                 | 97.00                                    | 8,559.00                                 | 5,246.00                                | 4,242.00                                 | 5,661.00                                        | 5,335.00                                    | 1,928.00                                        | 2,542.00                                    | 475.00                                  | 10,432.00                               | 6,929.00                                  | 2,025.00                                  | 12,739.00                                 | 4,136.00                                  | 995.00<br>7 775 00                                                                     | 219.00                                     | 6,791.00                                | 6,196.00                                | 6,225.00                                | 7,866.00                                | 5,160.00                                      | 5,148.00                                      | 6,929.00                                | 4,381.00                                 | 748.00                                  | 2,420.00                                | 6,259.00                                | 7,238.00                                | 2,569.00                                        | 2,337.00                                 | 3,802.00                                 | 5,760.00                                 | 2,309.00                                 | 3,965.00                                 | 17,927.00<br>8,901.00                                                               |
| n-use Avg<br>uel Econ                | 12.43                                   | 11.20                                   | 11.28                                   | 8.67                                     | 7 14                                                                               | 13.75                                    | 10.93                                    | 9.51                                    | 8.87                                     | 5.08                                     | 9.46                                     | 9.70                                    | 9.98                                     | 22.11                                           | 9.14                                        | 15.11                                           | 20.83                                       | 22.87                                   | 10.44                                   | 22.50                                     | 25.90                                     | 27.01                                     | 24.78                                     | 32.47                                                                                  | 17.51                                      | 10.61                                   | 11.39                                   | 10.91                                   | 12.21                                   | 10.26                                         | 11.60                                         | 9.70                                    | 9.46                                     | 16.09                                   | 12.40                                   | 9.24                                    | 12.94                                   | 12.74                                           | -1.70                                    | 19.73                                    | 20.24                                    | 14.40                                    | 18.54                                    | 24.56<br>26.10                                                                      |
| n-use Fuel Ir<br>Consum.             | 593.22                                  | 800.67                                  | 407.50                                  | 274.39                                   | 900.12                                                                             | 102.50                                   | 670.88                                   | 674.81                                  | 195.47                                   | 19.10                                    | 971.83                                   | 585.50                                  | 451.51                                   | 269.60                                          | 622.90                                      | 185.20                                          | 122.03                                      | 20.77                                   | 1104.60                                 | 307.95                                    | 78.20                                     | 471.62                                    | 166.91                                    | 62.15<br>230.43                                                                        | 12.51                                      | 640.30                                  | 619.90                                  | 625.24                                  | 722.17                                  | 561.36                                        | 491.17                                        | 802.20                                  | 525.13                                   | 46.50                                   | 195.20                                  | 764.98                                  | 641.54                                  | 201.72                                          | 151.80                                   | 192.66                                   | 284.55                                   | 160.38                                   | 213.88                                   | 729.79<br>340.97                                                                    |
| In-use Mileage                       | 7,375.00                                | 8,965.00                                | 4,595.00                                | 2,378.00                                 | 6,333.00<br>2.071.00                                                               | 1.409.00                                 | 7,336.00                                 | 6,420.00                                | 1,734.00                                 | 97.00                                    | 9,192.00                                 | 5,678.00                                | 4,505.00                                 | 5,961.00                                        | 5,692.00                                    | 2,799.00                                        | 2,542.00                                    | 475.00                                  | 11,529.00                               | 6,929.00                                  | 2,025.00                                  | 12,739.00                                 | 4,136.00                                  | 995.00<br>7 775 00                                                                     | 219-00                                     | 6,791.00                                | 7,059.00                                | 6,823.00                                | 8,817.00                                | 5,760.00                                      | 5,697.00                                      | 7,780.00                                | 4,967.00                                 | 748.00                                  | 2,420.00                                | 7,065.00                                | 8,302.00                                | 2,569.00                                        | -258.00                                  | 3,802.00                                 | 5,760.00                                 | 2,309.00                                 | 3,965.00                                 | 17,927.00<br>8,901.00                                                               |
| Fuel Type                            | GAS                                     | GAS                                     | GAS                                     | GAS                                      | CAS<br>GAS                                                                         | GAS                                      | GAS                                      | GAS                                     | GAS                                      | GAS                                      | GAS                                      | GAS                                     | GAS                                      | GAS                                             | GAS                                         | GAS                                             | GAS                                         | GAS                                     | GAS                                     | GAS                                       | GAS                                       | GAS                                       | GAS                                       | GAS.                                                                                   | GAS                                        | GAS                                     | GAS                                     | GAS                                     | GAS                                     | GAS                                           | GAS                                           | GAS                                     | GAS                                      | GAS                                     | GAS                                     | GAS                                     | GAS                                     | GAS                                             | GAS                                      | GAS                                      | GAS                                      | GAS                                      | GAS                                      | GAS<br>GAS                                                                          |
| Acq.<br>Cost                         | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                   | \$0.00                                                                             | \$0.00<br>\$0.00                         | \$0.00                                   | \$0.00                                  | \$0.00                                   | \$0.00                                   | \$0.00                                   | \$0.00                                  | \$0.00                                   | \$0.00                                          | \$0.00                                      | \$0.00                                          | \$0.00                                      | \$0.00                                  | \$0.00                                  | \$0.00                                    | \$0.00                                    | \$0.00                                    | \$0.00                                    | \$0.00                                                                                 | \$0.00                                     | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                        | \$0.00                                        | \$0.00                                  | \$0.00                                   | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                  | \$0.00                                          | \$0.00                                   | \$0.00                                   | \$0.00                                   | \$0.00                                   | \$0.00                                   | \$0.00<br>\$0.00                                                                    |
| EPA<br>City<br>Fuel                  |                                         |                                         |                                         |                                          |                                                                                    |                                          |                                          |                                         |                                          |                                          |                                          |                                         |                                          |                                                 |                                             |                                                 |                                             |                                         |                                         |                                           |                                           |                                           |                                           |                                                                                        |                                            |                                         |                                         |                                         |                                         |                                               |                                               |                                         |                                          |                                         |                                         |                                         |                                         |                                                 |                                          |                                          |                                          |                                          |                                          |                                                                                     |
| EPA<br>Hwy<br>Fuel                   |                                         |                                         |                                         |                                          |                                                                                    |                                          |                                          |                                         |                                          |                                          |                                          |                                         |                                          |                                                 |                                             |                                                 |                                             |                                         |                                         |                                           |                                           |                                           |                                           |                                                                                        |                                            |                                         |                                         |                                         |                                         | 16 15                                         | 19 15                                         |                                         |                                          |                                         |                                         |                                         |                                         |                                                 |                                          |                                          |                                          |                                          |                                          |                                                                                     |
| EPA<br>GVWR Hwy<br>Fuel              | 6000                                    | 8600                                    | 8600                                    | 10000                                    | 10000                                                                              | 15000                                    | 10000                                    | 5960                                    | 10000                                    | 19600                                    | 10000                                    | 5260                                    | 10000                                    | 4722                                            | 0006                                        | 6930                                            | 2700                                        | 2160                                    | 8600                                    | 2760                                      | 2760                                      | 2760                                      | 2760                                      | 2/60<br>2760                                                                           | 2760                                       | 8600                                    | 8600                                    | 5600                                    | 9360                                    | 8600 16 15                                    | 8600 19 15                                    | 5620                                    | 10000                                    | 4400                                    | 7200                                    | 9500                                    | 9500                                    | 7200                                            | 3420                                     | 3219                                     | 3219                                     | 3420                                     | 3420                                     | 3219<br>XXXX                                                                        |
| VIN GVWR Hwy<br>Fuel                 | 1FTDF1721VKD55817 6000                  | 1GCGG35K2SF146082 8600                  | 1GCGG35K1SF147496 8600                  | 1GBHC34K6SE240588 10000                  |                                                                                    | 15011554155555554 15000                  | 1GBHC34K4SE203233 10000                  | 1GBHC34K9RE311406 5960                  | 1GBHC34K8SE117729 10000                  | 1FDNK64P7NVA14185 19600                  | 1GBHC34K2SE204476 10000                  | 1GBHC34K7RE311047 5260                  | 1GBHC34K8SE203428 10000                  | 1FAFP522OXG290362 4722                          | 1GTGC33R3XF094531 9000                      | 1FTRF27Z9WKB88228 6930                          | 3G1JC5240YS118488 2700                      | JTDBT123910109989 2160                  | 1GBGC24R5TE125582 8600                  | 3N1CB51D63L782093 2760                    | 3N1CB51D43L715136 2760                    | 3N1CB51D53L713783 2760                    | 3N1CB51D33L711417 2760                    | 3N1CB51D03L/12850 2/60<br>3N1CB51D03L775366 2760                                       | 3N1CB51D23L775254 2760                     | 1GBGC24ROTE122590 8600                  | 1GBGC24R5TE125033 8600                  | 1FDHF25H8TEB77037 5600                  | 1GBGC24R9TE125648 9360                  | 1FDHF25H5TEB77044 8600 16 15                  | 1GBGC24R7TE130380 8600 19 15                  | 1FDHF25H8TEB77040 5620                  | 1GBJK34R3TE184368 10000                  | 1GCCS14X8V8190112 4400                  | 1GCFC24M9VE249787 7200                  | 1FTJE34L9VHC12562 9500                  | 1FTJE34L7VHC12561 9500                  | 1GCFC24M6WZ128077 7200                          | JTDBF30K240157478 3420                   | JTDBF30K140157942 3219                   | JTDBF30K740157184 3219                   | JTDBF30K140157956 3420                   | JTDBF30KX40157230 3420                   | JTDBF32K440157897 3219<br>JTDBE32K653007292 XXXX                                    |
| License VIN GVWR Hwy Plate # FUel    | SHA548 1FTDF1721VKD55817 6000           | SHA549 1GCGG35K2SF146082 8600           | SHA674 1GCGG35K1SF147496 8600           | SHA675 1GBHC34K6SE240588 10000           | SHA6/6 1F1EF15YXSLB5U319 625U<br>SHA717 1GRHC34K0SF240665 10000                    | SHA794 1FDXF46P23EC13754 15000           | SHA820 1GBHC34K4SE203233 10000           | SHA821 1GBHC34K9RE311406 5960           | SHA822 1GBHC34K8SE117729 10000           | SHA838 1FDNK64P7NVA14185 19600           | SHA839 1GBHC34K2SE204476 10000           | SHA840 1GBHC34K7RE311047 5260           | SHA841 1GBHC34K8SE203428 10000           | SHA869 1FAFP5220XG290362 4722                   | SHA896 1GTGC33R3XF094531 9000               | SHA897 1FTRF27Z9WKB88228 6930                   | SHA928 3G1JC5240YS118488 2700               | SHA929 JTDBT123910109989 2160           | SHA999 1GBGC24R5TE125582 8600           | SHB130 3N1CB51D63L782093 2760             | SHB131 3N1CB51D43L715136 2760             | SHB132 3N1CB51D53L713783 2760             | SHB133 3N1CB51D33L711417 2760             | SHB134 3N1CB51D03L/12850 2760<br>SHB135 3N1CB51D031775266 3760                         | SHB136 3N1CB51D231 775254 2760             | SHB191 1GBGC24ROTE122590 8600           | SHB192 1GBGC24R5TE125033 8600           | SHB197 1FDHF25H8TEB77037 5600           | SHB198 1GBGC24R9TE125648 9360           | SHB199 1FDHF25H5TEB77044 8600 16 15           | SHB200 1GBGC24R7TE130380 8600 19 15           | SHB305 1FDHF25H8TEB77040 5620           | SHB306 1GBJK34R3TE184368 10000           | SHB339 1GCCS14X8V8190112 4400           | SHB397 1GCFC24M9VE249787 7200           | SHB473 1FTJE34L9VHC12562 9500           | SHB474 1FTJE34L7VHC12561 9500           | SHB764 1GCFC24M6WZ128077 7200                   | SHB943 JTDBF30K240157478 3420            | SHB944 JTDBF30K140157942 3219            | SHB945 JTDBF30K740157184 3219            | SHB946 JTDBF30K140157956 3420            | SHB949 JTDBF30KX40157230 3420            | SHB950 JTDBF32K440157897 3219<br>SHC330 JTDBE32K653007292 XXXX                      |
| Year License UIN GVWR Hwy Fuel       | 1997 SHA548 1FTDF1721VKD55817 6000      | 1995 SHA549 1GCGG35K2SF146082 8600      | 1995 SHA674 1GCGG35K1SF147496 8600      | 1995 SHA675 1GBHC34K6SE240588 10000      | 195 SHA6/6 1FTEFT5YASLB3U319 623U<br>1005 SHA717 1/CBHC34K9SF240665 10000          | 2003 SHA794 1FDXF46P23EC13754 15000      | 1995 SHA820 1GBHC34K4SE203233 10000      | 1994 SHA821 1GBHC34K9RE311406 5960      | 1995 SHA822 1GBHC34K8SE117729 10000      | 1992 SHA838 1FDNK64P7NVA14185 19600      | 1995 SHA839 1GBHC34K2SE204476 10000      | 1991 SHA840 1GBHC34K7RE311047 5260      | 1995 SHA841 1GBHC34K8SE203428 10000      | 1999 SHA869 1FAFP522OXG290362 4722              | 1999 SHA896 1GTGC33R3XF094531 9000          | 1998 SHA897 1FTRF27Z9WKB88228 6930              | 2000 SHA928 3G1JC5240YS118488 2700          | 2001 SHA929 JTDBT123910109989 2160      | 1996 SHA999 1GBGC24R5TE125582 8600      | 2003 SHB130 3N1CB51D63L782093 2760        | 2003 SHB131 3N1CB51D43L715136 2760        | 2003 SHB132 3N1CB51D53L713783 2760        | 2003 SHB133 3N1CB51D33L711417 2760        | 2003 SHB134 3N1CB51D03L/12850 2/60                                                     | 2003 SHB136 3N1CB51D231 775254 2760        | 1996 SHB191 1GBGC24ROTE122590 8600      | 1996 SHB192 1GBGC24R5TE125033 8600      | 1996 SHB197 1FDHF25H8TEB77037 5600      | 1996 SHB198 1GBGC24R9TE125648 9360      | 1996 SHB199 1FDHF25H5TEB77044 8600 16 15      | 1996 SHB200 1GBGC24R7TE130380 8600 19 15      | 1996 SHB305 1FDHF25H8TEB77040 5620      | 1996 SHB306 1GBJK34R3TE184368 10000      | 1997 SHB339 1GCCS14X8V8190112 4400      | 1997 SHB397 1GCFC24M9VE249787 7200      | 1997 SHB473 1FTJE34L9VHC12562 9500      | 1997 SHB474 1FTJE34L7VHC12561 9500      | 1998 SHB764 1GCFC24M6WZ128077 7200              | 2004 SHB943 JTDBF30K240157478 3420       | 2004 SHB944 JTDBF30K140157942 3219       | 2004 SHB945 JTDBF30K740157184 3219       | 2004 SHB946 JTDBF30K140157956 3420       | 2004 SHB949 JTDBF30KX40157230 3420       | 2004 SHB950 JTDBF32K440157897 3219<br>2005 SHC330 JTDBE32K653007292 XXXX            |
| Model Year License VIN GVWR Hwy Fuel | XXXX 1997 SHA548 1FTDF1721VKD55817 6000 | XXXX 1995 SHA549 1GCGG35K2SF146082 8600 | XXXX 1995 SHA674 1GCGG35K1SF147496 8600 | XXXX 1995 SHA675 1GBHC34K6SE240588 10000 | XXXX 193 SHA6/6 1F1EF15YXSLB5U319 6250<br>XXXY 1005 SHA717 1GRHC34K0SF240665 10000 | XXXX 2003 SHA794 1FDXF46P23EC13754 15000 | XXXX 1995 SHA820 1GBHC34K4SE203233 10000 | XXXX 1994 SHA821 1GBHC34K9RE311406 5960 | XXXX 1995 SHA822 1GBHC34K8SE117729 10000 | XXXX 1992 SHA838 1FDNK64P7NVA14185 19600 | XXXX 1995 SHA839 1GBHC34K2SE204476 10000 | XXXX 1991 SHA840 1GBHC34K7RE311047 5260 | XXXX 1995 SHA841 1GBHC34K8SE203428 10000 | XXXX   1999   SHA869   1FAFP5220XG290362   4722 | XXXX  1999  SHA896  1GTGC33R3XF094531  9000 | XXXX   1998   SHA897   1FTRF27Z9WKB88228   6930 | Cavalier 2000 SHA928 3G1JC5240YS118488 2700 | Echo 2001 SHA929 JTDBT123910109989 2160 | XXXX 1996 SHA999 1GBGC24R5TE125582 8600 | Sentra 2003 SHB130 3N1CB51D63L782093 2760 | Sentra 2003 SHB131 3N1CB51D43L715136 2760 | Sentra 2003 SHB132 3N1CB51D53L713783 2760 | Sentra 2003 SHB133 3N1CB51D33L711417 2760 | Sentra 2003 SHB134 3N1CB51D03L/12850 2/60<br>Sentra 2003 SHB134 3N1CB51D03L/12850 2/60 | Sentra 2003 SHB136 3N1CB51D23I 775254 2760 | XXXX 1996 SHB191 1GBGC24ROTE122590 8600 | XXXX 1996 SHB192 1GBGC24R5TE125033 8600 | XXXX 1996 SHB197 1FDHF25H8TEB77037 5600 | XXXX 1996 SHB198 1GBGC24R9TE125648 9360 | XXXX 1996 SHB199 1FDHF25H5TEB77044 8600 16 15 | XXXX 1996 SHB200 1GBGC24R7TE130380 8600 19 15 | XXXX 1996 SHB305 1FDHF25H8TEB77040 5620 | XXXX 1996 SHB306 1GBJK34R3TE184368 10000 | XXXX 1997 SHB339 1GCCS14X8V8190112 4400 | XXXX 1997 SHB397 1GCFC24M9VE249787 7200 | XXXX 1997 SHB473 1FTJE34L9VHC12562 9500 | XXXX 1997 SHB474 1FTJE34L7VHC12561 9500 | XXXX   1998   SHB764   1GCFC24M6WZ128077   7200 | Camry 2004 SHB943 JTDBF30K240157478 3420 | Camry 2004 SHB944 JTDBF30K140157942 3219 | Camry 2004 SHB945 JTDBF30K740157184 3219 | Camry 2004 SHB946 JTDBF30K140157956 3420 | Camry 2004 SHB949 JTDBF30KX40157230 3420 | Camry 2004 SHB950 JTDBF32K440157897 3219<br>XXXX 2005 SHC330 JTDBE32K653007292 XXXX |

|                            | -                 | -                 |                   |                   |                   |                   |                   | -                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -                 |                   |                   |                   |                   |                   |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Annual<br>Avg Fuel<br>Econ | 23.99             | 23.50             | 15.08             | 22.64             | 101.67            | 9.28              | 9.20              | 12.10             | 12.32             | 9.79              | 10.67             | 5.88              | 10.33             | 20.02             | 10.09             | 10.98             | 10.60             | 8.77              | 9.75              | 11.32             | 9.43              | 104.55            | 10.31             | 14.50             | 11.28            | 10.47             | 19.16             | 17.87             | 14.09             | 16.99             | 8.89              | 43.94             | 11.50             | 19.51             | 21.65             | 19.78             | 20.18             | 22.52             | 10.05             |
| Annual Fuel<br>Consum      | 100.35            | 434.95            | 23.81             | 226.16            | 26.32             | 830.68            | 513.10            | 515.02            | 628.11            | 577.96            | 7.78              | 875.60            | 674.23            | 178.14            | 684.92            | 720.42            | 273.10            | 678.90            | 492.60            | 489.58            | 934.10            | 396.85            | 543.50            | 113.30            | 582.50           | 257.96            | 316.50            | 87.30             | 124.60            | 108.70            | 529.79            | 67.38             | 11.91             | 229.22            | 63.52             | 226.01            | 23.93             | 340.28            | 174.40            |
| Annual<br>Mileage          | 2,407.00          | 10,220.00         | 359.00            | 5,120.00          | 2,676.00          | 7,706.00          | 4,720.00          | 6,232.00          | 7,739.00          | 5,656.00          | 83.00             | 5,146.00          | 6,968.00          | 3,567.00          | 6,912.00          | 7,912.00          | 2,895.00          | 5,956.00          | 4,803.00          | 5,544.00          | 8,806.00          | 41,489.00         | 5,601.00          | 1,643.20          | 6,573.00         | 2,702.00          | 6,065.00          | 1,560.00          | 1,756.00          | 1,847.00          | 4,711.00          | 2,961.00          | 137.00            | 4,471.00          | 1,375.00          | 4,470.00          | 483.00            | 7,664.00          | 1,752.00          |
| In-use Avg<br>Fuel Econ    | 23.99             | 23.50             | 15.08             | 22.64             | 101.67            | 15.12             | 8.91              | 12.12             | 12.15             | 9.65              | 10.67             | 5.87              | 10.19             | 20.02             | 10.07             | 11.30             | 10.60             | 9.38              | 9.73              | 11.37             | 9.49              | 104.55            | 10.33             | 14.50             | 11.48            | 10.47             | 19.12             | 18.01             | 14.16             | 17.05             | 8.89              | 39.25             | 11.50             | 19.51             | 21.65             | 19.78             | 20.18             | 22.52             | 9.97              |
| In-use Fuel<br>Consum.     | 100.35            | 434.95            | 23.81             | 226.16            | 26.32             | 926.96            | 587.60            | 576.02            | 687.93            | 619.18            | 7.78              | 1000.30           | 744.86            | 178.14            | 750.87            | 770.31            | 301.10            | 740.70            | 545.60            | 558.15            | 989.10            | 396.85            | 567.50            | 113.30            | 652.50           | 257.96            | 340.50            | 103.40            | 135.80            | 146.60            | 529.79            | 81.20             | 11.91             | 229.22            | 63.52             | 226.01            | 23.93             | 340.28            | 237.40            |
| In-use Mileage             | 2,407.00          | 10,220.00         | 359.00            | 5,120.00          | 2,676.00          | 14,013.00         | 5,233.00          | 6,980.00          | 8,360.00          | 5,974.00          | 83.00             | 5,868.00          | 7,592.00          | 3,567.00          | 7,562.00          | 8,708.00          | 3,191.00          | 6,947.00          | 5,308.00          | 6,346.00          | 9,387.00          | 41,489.00         | 5,861.00          | 1,643.20          | 7,493.00         | 2,702.00          | 6,509.00          | 1,862.00          | 1,923.00          | 2,500.00          | 4,711.00          | 3,187.00          | 137.00            | 4,471.00          | 1,375.00          | 4,470.00          | 483.00            | 7,664.00          | 2,366.00          |
| Fuel Type                  | GAS               | GAS              | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               | GAS               |
| Acq.<br>Cost               | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00           | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            | \$0.00            |
| EPA<br>City<br>Fuel        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| EPA<br>Hwy<br>Fuel         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| GVWR                       | XXXX              | XXXX              | XXXX              | XXX               | 13000             | 8800              | 8800              | 8800              | 8800              | 8800              | XXXX              | 10000             | 8800              | XXXX              | XXXX             | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXXX              | XXX               |
| NIA                        | JTDBE32K553007557 | JTDBE32K753007852 | JTDBE32K253008228 | JTDBE32K853009612 | 1FDWF36P36EB24320 | 3B6KC26Z0XM580704 | 3B6KC26Z7XM580702 | 3B6KC2628XM580708 | 3B6KC26Z5XM580701 | 3B6KC26Z2XM580705 | 1GCCS14X6V8188441 | 2B7KB31Z1MK431016 | 3B6KC26Z6XM580707 | 1FAHP53U65A265636 | 3B6KC26Z7XM580697 | 3B6KC26Z6XM580710 | 3B6KC26Z3XM580714 | 3B6MF3654XM572026 | 3B6KC26Z9XM579034 | 2B7KB31Y7YK147516 | 3B6KF26Z5WM269551 | 1FDSX20R78EA28953 | 1FDSX20R58EA28952 | 1FDSX20R38EA28951 | 2FTRF7Z5YCA40773 | 1FDWX36R28EA24355 | 1FTYR10V5XPB66509 | 1FAFP53262A202988 | 1FAFP53221A226171 | 1GDDS1455Y8298268 | 1GCHK33J0YF488233 | 1GCCS1450Y8301593 | 1C3LC46R17N676511 | 1C3LC46R17N676508 | 1C3LC46R37N676512 | 1C3LC46R77N676514 | 1C3LC46RX7N676510 | 1C3LC46R57N676513 | 1GCHG35R5Y1270788 |
| License<br>Plate #         | SHC331            | SHC332            | SHC335            | SHC336            | SHC345            | SHC350            | SHC351            | SHC352            | SHC353            | SHC354            | SHC365            | SHC378            | SHC383            | SHC397            | SHC449            | SHC450            | SHC451            | SHC452            | SHC453            | SHC454            | SHC580            | SHC719            | SHC742            | SHC749            | SHC761           | SHC762            | SHC800            | SHC801            | SHC802            | SHC876            | SHC877            | SHC878            | SHC915            | SHC916            | SHC917            | SHC919            | SHC920            | SHC921            | SHD165            |
| Year                       | 2005              | 2005              | 2005              | 2005              | 2006              | 1999              | 1999              | 1999              | 1999              | 1999              | 1997              | 1999              | 1999              | 2005              | 1999              | 1999              | 1999              | 1999              | 1999              | 2000              | 1998              | 2008              | 2008              | 2008              | 2000             | 2008              | 1999              | 2002              | 2001              | 2000              | 2000              | 2000              | 2007              | 2007              | 2007              | 2007              | 2007              | 2007              | 2000              |
| -                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ~                 |                   | >                 | >                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×                | $\checkmark$      | $\sim$            | ×                 | <u> </u>          | ×                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×                 | ×>                |
| Mode                       | XXXX              | XXXX              | XXXX              | XXX               | XXXX              | (XXX              | RAM               | (XXX              | (XXX              | (XXX)             | (XXX              | (XXX)             | XXX               | XXX               | XX                | XXX               | XX                | XX                | XX               | XXX               | XX<br>XX          | XX                | хX<br>Х           | XX                | XX                | XX                | XXX               | XX                | XX                | XXX               | XX                | XX                |                   |

POWERLINES

A Hawaiian Electric Company, Inc. Publication Copyright 2008, No.1 Spring 2008

## Energy Efficiency Takes-Off at the Honolulu International Airport

Energy Efficiency Tips 4 Focus on Safety: GFCIs & AFCIs 6 Energy Expo Update 8 Energy\$olutions Update 9 Maui Harness Wave Energy 10 Business Engagement 13

Departure Gates

HENOLULU INTERNATIONAL AIRCOL

A-13



To Our Valued Commercial Customers

ALOHA! Our Spring Issue is packed full of helpful tips on staying safe and saving energy.

- Honolulu International Airport utilizes high-intensity LED technology in the taxiway light fixtures and guidance signs.
- Top ten tips to assist commercial and residential customers become more energy efficient
- Learn how GFCIs and AFCIs can help to prevent electric shock and fire.
- MECO and Oceanlinx partner to develop an innovative and environmentally based wave energy project.

Mark your calendars for HECO's 2008 Efficient Electro-Technology Exposition & Conference, which will be held on Thursday, September 18, 2008 at the Hawai'i Convention Center. We look forward to seeing you!

Mahalo,

Dr. Karl E. Stahlkopf Senior Vice President of Energy Solutions and Chief Technology Officer Energy Efficiency Takes-Off at the Honolulu International Airport

As part of a bold and strategic energy plan that encourages and supports market-based development of reliable, cost-effective, and self-reliant energy for Hawai'i, Governor Linda Lingle issued Administrative Directive No. 06-01 (Energy and Resource Efficiency and Renewable Energy and Resource Development) in January 20, 2006. This directive states in part that State agencies must assess their practices and programs to reduce energy use in order to establish a secure energy and economic future for the people of Hawai'i. Honolulu International Airport, one of the most energy-intensive facilities on the island of Oahu was the first State of Hawai'i – Department of Transportation (DOT) Airports Division's facility to take action towards saving energy, cutting costs, and improving its sustainability. With \$4 million



in funds, energy efficiency projects took off in 2007 with the replacement of the airfield taxiway light fixtures and guidance signs.

Taking advantage of the increased performance and lowered cost of high-intensity Lighting Emitting Diode (LED) technology, the DOT Airports Division's team of engineers were able to replace all of the 30-watt

incandescent taxiway lamps with 1-watt high-intensity LED lamps. Along with the lamps, the 30/45-watt isolation transformers were also replaced with lower wattage more efficient transformers. Each taxiway light fixture uses an isolation transformer to isolate low-voltage in the lamp from the high operating voltage present on the airfield series of lighting circuits. When one of the lamps fails, the isolation transformer plays a key role in helping to prevent the interruption of power to the remaining loads. The overall wattage reduction for the entire taxiway lighting system (lamp and isolation transformer) was estimated to be 36-watt per fixture. This is based upon efficiencies listed under the Siemens Elevated Taxiway Edge Light product specifications. With the retrofit of 1755 taxiway lights and isolation transformers, Honolulu International Airport was able to achieve a reduction in energy consumption of nearly 300,000 kWh per year and savings of more than \$27,000 on their annual electric bill. In addition to the energy and dollar savings, Hawaiian Electric Company, Inc. (HECO) Energy\$olutions<sup>SM</sup> for Business program provided a customized rebate of over \$19,000.

Benefits from using this new class of high-intensity LED comes from the extensive lifetime of the lamp. The LEDs used in the taxiway light fixtures at Honolulu International Airport have an average life of 100,000 hours under high-intensity conditions and more than 200,000 hours under actual operating conditions. With a far greater life expectancy than conventional incandescent lamps (i.e., 1000 hours), there is a significant potential for savings in both maintenance costs as well as reduction in operational disruptions.



Additional energy efficiency measures implemented at the airport were the retrofitting of 286 guidance signs. The main purpose of these signs is to guide pilots to a particular point on the



airfield, identify holding positions, identify taxiway and runway intersections, and prohibit aircraft entry into designated areas. The old guidance signs, internally illuminated by two or more 50-watt high-pressure sodium (HPS) lamps, were replaced with new Siemens' Signature Series guidance signs, which use 18-watt pin mount compact fluorescent lamps (CFLs). Each new guidance sign is made of two to four modules containing two lamps per module, thus the total number of CFL lamps installed for 286 guidance signs is 1422 CFLs.

As a result of these new energy efficient guidance signs replacement, Honolulu International Airport saved an additional 300,000 kWh in energy consumption per year and received a standard rebate of over \$14,000 under HECO's Energy\$olutions<sup>™</sup> for Business program. The CFL provides a more uniform distribution of light, making guidance signs more readable.

The next energy efficiency "arrival" from Honolulu International Airport is the replacement and relocation of the Diamond Head Chiller Plant. The new chiller plant will have the capability to air-condition the entire airport while the Ewa and Overseas/Main Terminal Chiller Plants undergo separate renovations. In fact, the three chiller plants will be consolidated into one central plant. This project is already on its way and it will be the subject of a future Powerlines publication.

Energy Savings Highlights:Annual Savings\$54,000Annual kWh Reduction600,000HECO Rebates\$33,000

| AVERAGE<br>VEHICLE<br>MPG                                                       |                                        |                                        |                                                                               |                                       |                                     | 7.18                                   |                                 |                                 |                                       |                                       |            |                                                                            |                                       | 7.33                                  | 6.19                                   |                                         |                                         | 3.21                                    |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      | 2.50                               |                                   | 4.11                                                                     |                                   |                                       |                                       | 6.64                                   | insuff data                       | 2.33                                                                         | 001                                 |                                     |                                     |                                     |                                      |                                        | 3.47                                   | 3.34                                   | 2.66                                 | ZC.T                                                                | 11.06                                   |
|---------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------------|------------|----------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|--------------------------------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------|------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------------|-----------------------------------------|
| VEHICLE<br>FUEL<br>ONSUMPTI<br>ON                                               |                                        |                                        |                                                                               |                                       |                                     | 133.3                                  |                                 |                                 |                                       |                                       |            |                                                                            |                                       | 564.4                                 | 181.1                                  |                                         |                                         | 2397.4                                  |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      | 256                                |                                   | 275.5                                                                    |                                   |                                       |                                       | 242.5                                  |                                   | 332<br>272 8                                                                 | 2                                   |                                     |                                     |                                     |                                      |                                        | 3346.1                                 | 673.7                                  | 835.8                                | ß                                                                   | 1332.6                                  |
| VEHICLE<br>MILEAGE C                                                            |                                        |                                        |                                                                               |                                       |                                     | 957.4                                  |                                 |                                 |                                       |                                       |            |                                                                            |                                       | 4139                                  | 1121                                   |                                         |                                         | 7685                                    |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      | 639.2                              |                                   | 1133                                                                     |                                   |                                       |                                       | 1609.4                                 | 000                               | 900                                                                          | 8                                   |                                     |                                     |                                     |                                      |                                        | 11598                                  | 2250                                   | 2224                                 | GC 1                                                                | 14738                                   |
| EPA<br>RATED<br>MPG                                                             |                                        |                                        |                                                                               |                                       |                                     |                                        |                                 |                                 |                                       |                                       |            |                                                                            |                                       |                                       |                                        |                                         |                                         |                                         |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      |                                    |                                   |                                                                          |                                   |                                       |                                       |                                        |                                   |                                                                              |                                     |                                     |                                     |                                     |                                      |                                        |                                        |                                        |                                      |                                                                     |                                         |
| TYPE<br>FUEL                                                                    |                                        |                                        |                                                                               |                                       |                                     |                                        |                                 |                                 |                                       |                                       |            |                                                                            |                                       |                                       |                                        |                                         |                                         |                                         |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      |                                    |                                   |                                                                          |                                   |                                       |                                       |                                        |                                   |                                                                              |                                     |                                     |                                     |                                     |                                      |                                        |                                        |                                        |                                      |                                                                     |                                         |
| FUEL<br>USAGE                                                                   | Diesel                                 | Diesel                                 | Diesel                                                                        |                                       | Diesel                              | Diesel                                 | Diesel                          | Diesel                          | Diesel                                | Diesel                                | Discol     | Diesel                                                                     | Diesel                                | E-10                                  | E-10                                   | Diesel                                  | Diesel                                  | Diesel                                  | Diesel                                  | Diesel                               | Discel                               | Diacal                                                                              | Diesel                               | Diesel                               | Diesel                               | Diesel                             | Diesel                            | Diesel                                                                   | Diesel                            | Diesel                                | Diesel                                | Diesel                                 | Diesel                            | Diesel                                                                       | Diesel                              | Diesel                              | Diesel                              | Diesel                              | Diesel                               | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                               | Diesel                                                              | E-10                                    |
| FUEL                                                                            | Diesel                                 | Diesel                                 | Diesel                                                                        |                                       | Diesel                              | Diesel                                 | Diesel                          | Diesel                          | Diesel                                | Diesel                                | Discol     | Diesel                                                                     | Diesel                                | Gas                                   | Gas                                    | Diesel                                  | Diesel                                  | Diesel                                  | Diesel                                  | Diesel                               | Discel                               | Diesel                                                                              | Diesel                               | Diesel                               | Diesel                               | Diesel                             | Diesel                            | Diesel                                                                   | Diesel                            | Diesel                                | Diesel                                | Diesel                                 | Diesel                            | Diesel                                                                       | Diesel                              | Diesel                              | Diesel                              | Diesel                              | Diesel                               | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                               | Diesel                                                              | Gas                                     |
| GWR                                                                             |                                        |                                        |                                                                               |                                       |                                     |                                        |                                 |                                 |                                       |                                       |            |                                                                            |                                       |                                       |                                        |                                         |                                         |                                         |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      |                                    |                                   |                                                                          |                                   |                                       |                                       |                                        |                                   |                                                                              |                                     |                                     |                                     |                                     |                                      |                                        |                                        |                                        |                                      |                                                                     |                                         |
| Vehicle<br>Acquisition<br>Cost                                                  | 125,000.00                             | 125,000.00                             | 4/2,204.00<br>157,402.00                                                      | 65,445.58                             | 232,795.00                          | 176,949.75                             | 74,205.25                       | 223,694.75                      | 167,511.00                            | 79,241.20                             | 772 604 74 | 223,034.74                                                                 | 75,300,99                             | 58,355.87                             | 58,355.88                              | 568,195.50                              | 568,195.50                              | 814,746.00                              | 103,111.93                              | 142,484.00                           | 142,484.00                           | 142,484.00<br>142,484.00                                                            | 142.484.00                           | 142,484.00                           | 142,484.00                           | 87,412.00                          | 71,031.44                         | 73,537.00                                                                | 39.015.74                         | 197,985.00                            | 197,985.00                            | 48,165.00                              | 500.00                            | 172 861 30                                                                   | 166.965.19                          | 164,239.12                          | 164,239.12                          | 164,239.12                          | 178,690.47                           | 214,581.96                             | 214,581.96                             | 218,748.60                             | 200,957.68                           | 128 517 00                                                          | 32,513.07                               |
| License<br>Plate                                                                |                                        |                                        |                                                                               |                                       | SH4435                              | SH4441                                 | SH4459                          | SH4459                          | SH4851                                | SH4851                                | 2044852    | SH4854                                                                     | SH4854                                | SHB722                                | SHB723                                 | SHC128                                  | SHC129                                  | SHC130                                  | SH4048                                  | SH4391                               | 014394                               | SH439/<br>SH4308                                                                    | SH4400                               | SH4402                               | SH4404                               | SH4437                             | SH4440                            | SH4451                                                                   | SH5241                            | SH7120                                | SH7122                                | SH7232                                 | SHA286                            | SHA868                                                                       | SHB234                              | SHB235                              | SHB236                              | SHB237                              | SHB259                               | SHC165                                 | SHC166                                 | SHC315                                 | SHD101                               | SHD325                                                              | SHA729                                  |
| MAKE, MODEL, Vehicle Identification Number                                      | FIRE ENGINE - DONATION FROM BARBERS PT | FIRE ENGINE - DONATION FROM BARBERS PT | TRUCK, ARRE STKR # 101 BNAN IX/S094493<br>TRUCK, ARRE STKR #10TBKAK1X7S094493 | TRUCK, CF UTILITY, #1FDSX34Y36EB20064 | TRUCK PUMP PIERCE 1P9CT01D6JA040266 | TRUCK GMC RESCUE E-1 1GDJR33J9LF700631 | TRUCK CF OSHKOSH TA1500 SN41741 | TRUCK CF OSHKOSH TA1500 SN41741 | TRUCK CF T3000 VIN# 10T9L5EHXJ1033606 | TRUCK CF 13000 VIN# 1019L5EHXJ1033606 |            | TRUCK CF OSTROOM 1A1300 SN41/42<br>TRUCK CF T1500 V/IN# 10T91 5RH1G1028551 | TRUCK CF T1500 VIN# 10T9L5BH1G1028551 | TRUCK, FORD VIN# 1FMNU40S35EB36907 Y2 | TRUCK, FORD VIN# 1FMNU40S55EB36908 Y-1 | TRUCK, OSHKOSH 1500, VIN #10TBKAK135S08 | TRUCK, OSHKOSH 1500 VIN#10TBKAK135S0855 | TRUCK, OSHKOSH 3000 VIN#10TDKAK165S0855 | SWEEPER ELGIN G-2030D 1FDXH70P5NVA08324 | TRACTOR BUS 1C9CA2DS2LW077532 L-1832 | TRACION BUS IC9CAZUS3LW0//338 L-1638 | TRAUTUR BUS TUSUAZUS4LWU/ / 247 L-1847<br>TP ACTOR RUS 100C 420551 M/0775501 - 1850 | TRACTOR BUS 1C9CA2DS5LW077556 L-1856 | TRACTOR BUS 1C9CA2DS3LW077562 L-1862 | TRACTOR BUS 1C9CM2DS4MW077565 L-1865 | TANKER WATER KEN 1NKWL59XOKS525225 | TRUCK INTL DUMP 2MSFBG3R7LC038210 | TRUCK TRACTOR KEN 1XKDD20X2MS557716<br>TRUCK INT AD 411TA 440620CH424024 | BUS PARATRANSIT 287KB31ZONK170351 | TRACTOR BUS #1C9M3ABS7RW535716 L-2070 | TRACTOR BUS #1C9M3ABSORW535718 L-2072 | TRUCK FORD DUMP F800 1FDXF80EXSVA16909 | BUS, 1994, FORD 1FDKE30GORHB02840 | SWEEPER IN L/ELGIN #171 SCABIN32H334U3/<br>SWFEPER JOHN 770 CVCI ONF#H582061 | SHUTTLE FL25 VIN# 1FFFL25X93A043881 | SHUTTLE EL25 VIN# 1EEEL25X13A043888 | SHUTTLE EL25 VIN# 1EEEL25X33A043889 | SHUTTLE EL25 VIN# 1EEEL25XX3A043890 | TRACTOR EL 100 VIN#1EEEL25X94A043896 | SWEEPER TENNANT CENT 1GDM7F1305F516772 | SWEEPER TENNANT CENT 1GDM7F1305F518151 | SWEEPER TENNANT CENT 1GDM7F1325F533444 | SWEEPER, FRGHTLNR, 1FVAB6BV37DX09507 | TRUCK, DUMP, THTWYAHT78J642411<br>TRUCK_INTL_2008_1HSXRAPT081663210 | SEDAN FORD CROWN VIC #2FAHP71W13X150057 |
| YEAR                                                                            | 2000                                   | 2000                                   | 2007                                                                          | 2006                                  | 1988                                | 1990                                   | 1991                            | 1991                            | 1988                                  | 1988                                  | 1991       | 1981                                                                       | 1987                                  | 2005                                  | 2005                                   | 2005                                    | 2005                                    | 2005                                    | 1993                                    | 1991                                 | 1.661                                | 1001                                                                                | 1991                                 | 1991                                 | 1991                                 | 1989                               | 1991                              | 1991                                                                     | 1993                              | 1995                                  | 1995                                  | 1995                                   | 2002                              | 2003                                                                         | 2004                                | 2004                                | 2004                                | 2004                                | 2004                                 | 2006                                   | 2006                                   | 2007                                   | 2008                                 | 2008                                                                | 2003                                    |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Fire                                   | Fire                                   | Fire                                                                          | Fire                                  | Fire                                | Fire                                   | Fire                            | Fire                            | Fire                                  | Fire                                  | FIre       | Fire                                                                       | Fire                                  | Fire                                  | Fire                                   | Fire                                    | Fire                                    | Fire                                    | Heavy                                   | Heavy                                | Heavy                                | Неали                                                                               | Heavy                                | Heavy                                | Heavy                                | Heavy                              | Heavy                             | Heavy                                                                    | Heavy                             | Heavy                                 | Heavy                                 | Heavy                                  | Heavy                             | Неали                                                                        | Heavy                               | Heavy                               | Heavy                               | Heavy                               | Heavy                                | Heavy                                  | Heavy                                  | Heavy                                  | Heavy                                | Неалу                                                               | Law                                     |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 100                                    | 100                                    | 995<br>995                                                                    | 995                                   | 325                                 | 325                                    | 325                             | 325                             | 330                                   | 330                                   | 330        | 100                                                                        | 100                                   | 325                                   | 325                                    | 325                                     | 325                                     | 325                                     | 175                                     | 520                                  | 070                                  | 520                                                                                 | 520                                  | 520                                  | 520                                  | 175                                | 175                               | 175                                                                      | 520                               | 520                                   | 520                                   | 175                                    | 125                               | 175                                                                          | 520                                 | 520                                 | 520                                 | 520                                 | 520                                  | 175                                    | 175                                    | 175                                    | 181                                  | 181                                                                 | 310                                     |
|                                                                                 |                                        |                                        |                                                                               |                                       |                                     |                                        | 1                               | 1                               | - I.                                  | - L                                   | 1          |                                                                            |                                       |                                       |                                        |                                         |                                         | - 1                                     |                                         |                                      |                                      |                                                                                     |                                      |                                      |                                      |                                    | 1                                 |                                                                          |                                   |                                       |                                       | 1                                      |                                   |                                                                              |                                     |                                     |                                     |                                     | - 1                                  |                                        |                                        | - I.                                   |                                      |                                                                     |                                         |

1 of 10

| AVERAGE<br>VEHICLE<br>MPG                                                       | 10.82                                   | 75.55                                   | 10.38                                   | 10.66                                   | 00.01                           | 8.42                      |                                    | 9.00                            | 11.18                             | 11.22                             | 11.40                                                                  | 9.13                                |                                         | 9.75                             | 9.06                                 | 11 50                                                                 | 16.02                           | 10.01                             |                                        | 15.85                              | 6.50                             | 12.49                              | 6.19                               | 12.30                              |                                      | 1                            | 15.19                           | 11.92                                                                  |                                | 16.10                            |                                  | 10.36                            | 6.06                             |                                                                       | 6.84                                | 7.52                                | 7.11                                  | 8.57                                 |                            | 8.70                              | 9.15                             | 4.84                             | 13.03                        | 10.99                                 | 10.62                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------|---------------------------|------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------------------------------|---------------------------------|-----------------------------------|----------------------------------------|------------------------------------|----------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|----------------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------|---------------------------------------|----------------------------------------------------------------------------|
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              | 835.2                                   | 1446                                    | 590.4                                   | 1513.1                                  | 1401.9                          | 2319.9                    |                                    | 1389                            | 881.6                             | 565.2                             | 9 000. I                                                               | 73.5                                |                                         | 40.8                             | 26.7                                 | 62                                                                    | 110                             | 2                                 |                                        | 213                                | 46.5                             | 138.8                              | 210                                | 368                                |                                      | 000                          | 208                             | 84.5                                                                   |                                | 325                              |                                  | 230.3                            | 46.5                             |                                                                       | 550.5                               | 305.7                               | 883.7                                 | 319                                  |                            | 781                               | 153.5                            | 94.5                             | 460.2                        | 206                                   | 263.5                                                                      |
| VEHICLE<br>MILEAGE C                                                            | 9035                                    | 109238.6                                | 6130                                    | 16137                                   | 14/ 32                          | 19544                     |                                    | 12499.4                         | 9855.5                            | 6341.5                            | 8.01/0                                                                 | 671                                 |                                         | 398                              | 242                                  | 834 F                                                                 | 2013                            | 207                               |                                        | 3376                               | 302.3                            | 1733                               | 1300                               | 4526                               |                                      |                              | 3159                            | /001                                                                   |                                | 5234                             |                                  | 2385                             | 282                              |                                                                       | 3763                                | 2298                                | 6286                                  | 2733                                 |                            | 6793                              | 1404                             | 457                              | 5998                         | 2263                                  | 2799                                                                       |
| EPA<br>RATED<br>MPG                                                             |                                         |                                         |                                         |                                         |                                 |                           |                                    |                                 |                                   |                                   |                                                                        |                                     |                                         |                                  |                                      |                                                                       |                                 |                                   |                                        |                                    |                                  |                                    |                                    |                                    |                                      |                              |                                 |                                                                        |                                |                                  |                                  |                                  |                                  |                                                                       |                                     |                                     |                                       |                                      |                            |                                   |                                  |                                  |                              |                                       |                                                                            |
| TYPE<br>FUEL                                                                    |                                         |                                         |                                         |                                         |                                 |                           |                                    |                                 |                                   |                                   |                                                                        |                                     |                                         |                                  |                                      |                                                                       |                                 |                                   |                                        |                                    |                                  |                                    |                                    |                                    |                                      |                              |                                 |                                                                        |                                |                                  |                                  |                                  |                                  |                                                                       |                                     |                                     |                                       |                                      |                            |                                   |                                  |                                  |                              |                                       |                                                                            |
| FUEL<br>USAGE                                                                   | E-10                                    | E-10                                    | E-10                                    | E-10                                    | E-10                            | E-10                      |                                    | E-10                            | E-10                              | E-10                              | E-10                                                                   | E-10                                | E-10                                    | E-10                             | E-10                                 | E-10                                                                  | П-10                            | E-10                              | E-10                                   | E-10                               | E-10                             | E-10                               | E-10                               | E-10                               |                                      |                              | E-10                            | E-10                                                                   | E-10                           | E-10                             |                                  | E-10                             | E-10                             | E-10                                                                  | E-10                                | E-10                                | E-10                                  | E-10                                 | E-10                       | E-10                              | E-10                             | E-10                             | E-10                         | E-10                                  | <u>п-10</u>                                                                |
| FUEL<br>CONFIG                                                                  | Gas                                     | Gas                                     | Gas                                     | Gas                                     | Gas                             | Gas                       |                                    | Gas                             | Gas                               | Gas                               | Gas                                                                    | Gas                                 | Gas                                     | Gas                              | Gas                                  | Gas                                                                   | Gac                             | Gas                               | Gas                                    | Gas                                | Gas                              | Gas                                | Gas                                | Gas                                |                                      |                              | Gas                             | Gas                                                                    | Gas                            | Gas                              |                                  | Gas                              | Gas                              | Gas                                                                   | Gas                                 | Gas                                 | Gas                                   | Gas                                  | Gas                        | Gas                               | Gas                              | Gas                              | Gas                          | Gas                                   | Gas                                                                        |
| GWR                                                                             |                                         | -                                       | -                                       |                                         |                                 |                           |                                    |                                 |                                   |                                   |                                                                        |                                     |                                         |                                  |                                      |                                                                       |                                 |                                   |                                        |                                    |                                  | -                                  | -                                  | Ū                                  |                                      |                              |                                 |                                                                        |                                |                                  |                                  | -                                |                                  |                                                                       |                                     |                                     |                                       |                                      |                            | -                                 |                                  | _                                | Ū                            |                                       |                                                                            |
| Vehicle<br>Acquisition<br>Cost                                                  | 32,513.07                               | 32,513.07                               | 32,513.07                               | 32,513.07                               | 6.000.00                        |                           | 7,000.00                           | 7,500.00                        | 33,160.16                         | 33,160.16                         | 33, 100. 10<br>33 160 16                                               | 17.979.95                           | 6,539.59                                | 10,328.84                        | 12,082.56                            | 13,451./3<br>18 260 48                                                | 11 310 90                       | 18,418,00                         | 13,348.57                              | 12,395.87                          | 17,798.00                        | 12,395.87                          | 19,218.81                          | 15,174.00                          | 17,828.69                            | 21,542.00                    | 15,145.00                       | 16,409.28<br>13 429 30                                                 | 10,566.00                      | 10,150.00                        | 13,140.62                        | 10,762.57                        | 14,558.38                        | 7 883 44                                                              | 20 649 50                           | 20,649.50                           | 23,259.00                             | 16,908.40                            | 14,019.00                  | 17,543.89                         | 17,543.89                        | 6,100.00                         | 15,869.36                    | 4,900.00                              | 6,200.00                                                                   |
| License<br>Plate                                                                | SHA730                                  | SHA731                                  | SHA732                                  | SHA733                                  | SHB972                          | SHC341                    | SHC423                             | SHC678                          | SHC806                            | SHC807                            | SHCROG                                                                 | SH4049                              | <mark>SH4356</mark>                     | SH4364                           | SH4379                               | SH44081<br>SH4408                                                     | SH4817                          | SH4824                            | SH4826                                 | SH4884                             | SH4885                           | SH4886                             | SH4887                             | SH4888                             | SH4889                               | SH4890                       | SH4893                          | SH4894<br>SH4896                                                       | SH4897                         | SH4898                           | SH4899                           | SH4900                           | SH4902                           | SH5492<br>SH5403                                                      | SH6112                              | SH6114                              | SH6324                                | SH6326                               | SH6339                     | SH7257                            | SH7258                           | SH7371                           | SH7712                       | SH7787                                | SH8055                                                                     |
| MAKE, MODEL, Vehicle Identification Number                                      | SEDAN FORD CROWN VIC #2FAHP71W13X150060 | SEDAN FORD CROWN VIC #2FAHP71W53X150062 | SEDAN FORD CROWN VIC #2FAHP71W53X150059 | SEDAN FORD CROWN VIC #2FAHP71W33X150061 | JEEP CHEROKEE 1J4FJ28SOWL239641 | SUV, 2000 Ford Expedition | SUV, 1999, DODG, 1B4HS28ZXXF670302 | SUV 2007 FORD 1FMPU16L2YLB73440 | SEDAN CROWN VIC 2FAHP71W87X153401 | SEDAN CROWN VIC 2FAHP71WX7X153402 | SEDAN CROWN VIC ZFAHP71W1/A153403<br>SEDAN CROWN VIC 2FAHP71W37X153404 | VAN GMC SAFARI XT 16KDM19Z4NB546331 | WAGON STN. 4DR CHEV MALIBU, 1T35H9Z4157 | WAGON STN FORD 1FABP44F2EZ184232 | S/W CHEV CELEBRITY 1G1AW81W486180038 | WAGON STN FORD 1FABP55UIJG192119<br>WAGON STA FORD 1FACD55115NG188181 | WGN STN CHEV 1G1 IC8440N7323046 | WAGON STA CHEV. 261AW84T612116465 | WAGON CHEV CELEBRITY 1G1AW81W2J6260928 | TRK CHEV P/U S10 1GCCS14Z3M8192740 | TRUCK CHEV P/U 2GCEC19Z1L1239179 | TRK CHEV P/U S10 1GCCS14Z2M8192731 | TRUCK CHEV U/BDY 1GBGC24K9ME119952 | TRUCK CHEV U/BDY 1GCDC14H3LZ226824 | TRUCK P/U CREW CAB 1GTGR33KXMF700484 | TRUCK-CHEV 1GNDT13Z4M2218954 | TRUCK GMC P/U 1G1DC14Z7NZ537684 | TRUCK CHEV P/U 1GCUCI4ZXNZ2031/8<br>TRUCK DODGE P/I1187EN14X0.1S735902 | TRUCK GMC PU 1GTCS14EXM8512651 | TRUCK CHEV P/U 1GCCS14E6M8142797 | TRUCK CHEV P/U 1GCDC14H5JZ270692 | TRUCK CHEV P/U 1GCCS14R7J8205131 | TRUCK FORD P/U 1FTFF25H8HPA97387 | SEDAN CHEV LUMINA 261WN5418N9269253<br>WAGONI STNI CHEV 17351A7405338 | TRUCK GMC SIFREA #167633KXP.1749901 | TRUCK GMC SIERRA #1GTGC33K4P5749859 | TRUCK GMC COUP P/UP#1GDGK29K3PE556773 | TRUCK GMC TC P/UP #1GTEC19H3PE556716 | VAN FORD 1FMEE11H7PHB23772 | TRUCK CHEV P/UP 1GCDC14H3RZ259279 | TRUCK CHEV P/U 1GCDC14H1RZ259040 | TRUCK CHEV P/U 1GCDC14ZOJZ244915 | TRUCK GMC #1GTCS14WTY8123335 | TRUCK CHEV P/U S-10 1GCCS14Z3K8215141 | SEUAN ULD UIERA 4UR 163A633W3R0430433<br>TRUCK CHEV P/U #16CDC14ZXKZ232708 |
| YEAR                                                                            | 2003                                    | 2003                                    | 2003                                    | 2003                                    | 2006                            | 2000                      | 2006                               | 2007                            | 2007                              | 2007                              | 2002                                                                   | 1993                                | 1979                                    | 1985                             | 1987                                 | 1988                                                                  | 1003                            | 1991                              | 1989                                   | 1991                               | 1991                             | 1991                               | 1991                               | 1991                               | 1991                                 | 1991                         | 1993                            | 1993                                                                   | 1991                           | 1991                             | 1989                             | 1989                             | 1988                             | 1993<br>1080                                                          | 1994                                | 1994                                | 1994                                  | 1994                                 | 1994                       | 1995                              | 1995                             | 1995                             | 2000                         | 1995                                  | 1995                                                                       |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Law                                     | Law                                     | Law                                     | Law                                     | Law                             | Law                       | Law                                | Law                             | Law                               | Law                               | Law                                                                    | Liaht                               | Light                                   | Light                            | Light                                | Light                                                                 | Light                           | Light                             | Light                                  | Light                              | Light                            | Light                              | Light                              | Light                              | Light                                | Light                        | Light                           | Light                                                                  | Liaht                          | Light                            | Light                            | Light                            | Light                            | Light                                                                 | Light                               | Light                               | Light                                 | Light                                | Light                      | Light                             | Light                            | Light                            | Light                        | Light                                 | Light                                                                      |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 310                                     | 310                                     | 310                                     | 310                                     | 315                             | 180                       | 310                                | 310                             | 310                               | 310                               | 310                                                                    | 110                                 | 100                                     | 170                              | 110                                  | 131                                                                   | 001                             | 131                               | 100                                    | 122                                | 176                              | 122                                | 172                                | 110                                | 160                                  | 315                          | 173                             | 110                                                                    | 177                            | 131                              | 110                              | 131                              | 160                              | 240                                                                   | 177                                 | 177                                 | 174                                   | 174                                  | 160                        | 110                               | 172                              | 175                              | 177                          | 172                                   | 177                                                                        |
| ation<br>and)                                                                   | 4                                       | 4                                       | 4                                       | 4 4                                     | 4 4                             | 3 1                       | 4                                  | 4 1                             | 4                                 | 4,                                | 4 4                                                                    | - 1                                 | 7 1                                     | 3 1                              | 51                                   | - τ<br>ν σ                                                            | - <del>.</del>                  | - r                               | 7 1                                    | 1                                  | 3 1                              | -                                  | 3<br>1                             | 3 1                                | 2                                    | 4 0                          | <br>                            | ς<br>τ<br>τ                                                            | 3 1                            | 3 1                              | 3 1                              | 3 1                              | 2 1                              | 4 4                                                                   |                                     | 3 1                                 | 3<br>1                                | 3 1                                  | 2 1                        | 3 1                               | 3 1                              | 3 1                              | 3 1                          | 3<br>3<br>7<br>7                      | ი<br>- ლ                                                                   |
| Loc<br>(Isl                                                                     | 12 1                                    | 12 1                                    | 12                                      | 12 1                                    | 12                              | 12                        | 12 1                               | 12 1                            | 12 1                              | 12                                | 10                                                                     | 12                                  | 12 1                                    | 12 1                             | 12 1                                 | 10                                                                    | 101                             | 12                                | 12                                     | 12 1                               | 12 1                             | 12 1                               | 12 1                               | 12                                 | 12 1                                 | 12                           | 12                              | 12                                                                     | 12                             | 12                               | 12 1                             | 12 1                             | 12                               | 12 1                                                                  | 101                                 | 12                                  | 12 1                                  | 12 1                                 | 12                         | 12                                | 12                               | 12                               | 12                           | 12 1                                  | 12                                                                         |

|                    | AVERAGE<br>VEHICLE<br>MPG                            | 5.73                                    | 7.66                              | 11.58                                  | 9.37<br>8.45                                                           | 13.45                              | 18.48                       | 12.00                                | 11.85                               | 10.34                                  | 14.88                       | 14.80                                                       |                                         |                                         | 14.76                              | 17.78                              | 5.23                                   | 9.76                                  |                                  | 33.55     | 10.33                                                                      | 12.41                                   | 11.49                                  |                                      |                                      | 11.23                                   | 9.77                              | 77.0L     | 20.<br>                                       | 11.21                                |                                      | 9.11                                  | 0.1C                              | 8.60                                | 12.64                              | 10.50                            | 10.14                            | 11.65                                   | 10.13                               | 7.79                                 | 12.74                                                                               | 1. 1.                                                                                | 13.9                                 | 15.56                              | 8.79                                   |
|--------------------|------------------------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------------|------------------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------------------|-------------------------------------|----------------------------------------|-----------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|----------------------------------------|---------------------------------------|----------------------------------|-----------|----------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------|-----------|-----------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------------|
|                    | VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                   | 65.4                                    | 552.3                             | 345.4                                  | 178                                                                    | 126                                | 123.5                       | 118                                  | 116                                 | 202.5                                  | 120                         | 114.5                                                       | 2                                       |                                         | 88.7                               | 104.3                              | 94.5                                   | 149.3                                 | C<br>L<br>L                      | 20.8      | 418                                                                        | 61.1                                    | 75.6                                   |                                      |                                      | 217                                     | 619.6                             | 1//10.0   | 140                                           | 352.8                                |                                      | 513.3                                 | 105.5                             | 280.5                               | 606.2                              | 1044.7                           | 748                              | 206                                     | 161                                 | 503.5                                | 305.3                                                                               | 434.4<br>2734 5                                                                      | 139                                  | 236.9                              | 183.3                                  |
|                    | VEHICLE<br>MILEAGE                                   | 375                                     | 4229                              | 4000                                   | 253<br>1504                                                            | 1695                               | 2282                        | 1416                                 | 1379                                | 2093                                   | 1786                        | 1695                                                        | 200                                     |                                         | 1309                               | 1854                               | 494                                    | 1461                                  |                                  | 18/2      | 8106<br>8106                                                               | 758                                     | 869                                    |                                      |                                      | 2436                                    | 6056.2<br>4 0007 r                | C. / 6081 | 000                                           | 3954                                 |                                      | 4678                                  | 6210                              | 2412                                | 7663                               | 10967                            | 7586                             | 2399                                    | 1631                                | 3923                                 | 3891                                                                                | 20104                                                                                | 1939                                 | 3687                               | 1612                                   |
|                    | EPA<br>RATED<br>MPG                                  |                                         |                                   |                                        |                                                                        |                                    |                             |                                      |                                     |                                        |                             |                                                             |                                         |                                         |                                    |                                    |                                        |                                       |                                  |           |                                                                            |                                         |                                        |                                      |                                      |                                         |                                   |           |                                               |                                      |                                      |                                       |                                   |                                     |                                    |                                  |                                  |                                         |                                     |                                      |                                                                                     |                                                                                      |                                      |                                    |                                        |
|                    | FUEL                                                 |                                         |                                   |                                        |                                                                        |                                    |                             |                                      |                                     |                                        |                             |                                                             |                                         |                                         |                                    |                                    |                                        |                                       |                                  |           |                                                                            |                                         |                                        |                                      |                                      |                                         |                                   |           |                                               |                                      |                                      |                                       |                                   |                                     |                                    |                                  |                                  |                                         |                                     |                                      |                                                                                     |                                                                                      |                                      |                                    |                                        |
|                    | FUEL<br>USAGE                                        | E-10                                    | E-10                              | E-10                                   | E-10<br>F-10                                                           | E-10                               | E-10                        | E-10                                 | E-10                                | E-10                                   | E-10                        | п-10<br>П-10                                                | E-10                                    | E-10                                    | E-10                               | E-10                               | E-10                                   | E-10                                  | E-10                             | E-10      | E-10<br>E-10                                                               | E-10                                    | E-10                                   | E-10                                 | E-10                                 | E-10                                    | E-10                              | Е-10<br>1 | E-10<br>E-10                                  | E-10                                 | Diesel                               | E-10                                  | П-10                              | E-10                                | E-10                               | E-10                             | E-10                             | E-10                                    | E-10                                |                                      |                                                                                     | E-10                                                                                 | E-10                                 | E-10                               | E-10                                   |
|                    | FUEL<br>CONFIG                                       | Gas                                     | Gas                               | Gas                                    | Gas<br>Gas                                                             | Gas                                | Gas                         | Gas                                  | Gas                                 | Gas                                    | Gas                         | Gas                                                         | Gas                                     | Gas                                     | Gas                                | Gas                                | Gas                                    | Gas                                   | Gas                              | Gas       | Gas                                                                        | Gas                                     |                                        |                                      |                                      | Gas                                     | Gas                               | Gas       | E-85                                          | E-85                                 | Diesel                               | E-85                                  | 20-1<br>28-1                      | E-85                                | E-85                               | E-85                             | E-85                             | E-85                                    | E-85                                |                                      |                                                                                     | ב-מק                                                                                 | Propane/                             | Gas                                | E-85                                   |
|                    | GWWR                                                 |                                         |                                   |                                        |                                                                        |                                    |                             |                                      |                                     |                                        |                             |                                                             |                                         |                                         |                                    |                                    |                                        |                                       |                                  |           |                                                                            |                                         |                                        |                                      |                                      |                                         |                                   |           |                                               |                                      |                                      |                                       |                                   |                                     |                                    |                                  |                                  |                                         |                                     |                                      |                                                                                     | _                                                                                    |                                      |                                    |                                        |
|                    | Vehicle<br>Acquisition<br>Cost                       | 26,043.51                               | 26,043.51                         | 5,400.00                               | 5,200.00<br>4 500 00                                                   | 5,200.00                           | 13,041.61                   | 20,129.56                            | 17,500.00                           | 5,200.00                               | 18,311.21                   | 18 311 21                                                   | 21.667.11                               | 13,599.17                               | 15,680.94                          | 17,745.72                          | 19,715.28                              | 19,173.44                             | 28,645.65                        | 17,640.00 | 21,400.00<br>15,842.46                                                     | 22.770.66                               | 16,853.60                              | 20,785.00                            | 20,785.00                            | 41,318.28                               | 23,894.58                         | 23,894.58 | 22,034.79<br>152,408.00                       | 31,817.81                            | 174,131.85                           | 32,810.97                             | 21 680 01                         | 31.680.01                           | 31,680.01                          | 5,500.00                         | 5,500.00                         | 5,500.00                                | 5,000.00                            | 9,500.00                             | 5,000.00                                                                            | Z0,102.01                                                                            | 5,000.00                             | 24.821.98                          | 35,899.06                              |
|                    | License<br>Plate                                     | SH8080                                  | SH8081                            | SH8282                                 | SH8315<br>SH8315                                                       | SH8321                             | SH8476                      | SH8477                               | SH8478                              | SH8658                                 | SH8774                      | SH8776                                                      | SH8874                                  | SH8876                                  | SH8906                             | SH8926                             | SH9029                                 | SH9436                                | SH9569                           | SH9593    | SH9600                                                                     | SH9794                                  | SHA473                                 | SHA499                               | SHA500                               | SHA515                                  | SHA557                            | 803AHS    | SHA604<br>SHA630                              | SHA710                               | SHB451                               | SHB592                                |                                   | SHC237                              | SHC286                             | SHC301                           | SHC302                           | SHC303                                  | SHC305                              | SHC421                               | SHC422                                                                              |                                                                                      | SHC594                               | SHC662                             | SHC676                                 |
|                    | MAKE, MODEL, Vehicle Identification Number           | TRUCK CHEV P/UP RACK #1GCGC33K5SF001049 | TRUCK CHEV P/U #1GCGC33K1SF001016 | TRUCK CHEV P/U C10FS 1GCDC14Z6KZ233550 | SEDAN FORD TEMPO 1FACP36X2PK174767<br>TRUCK CHEV 1500 1GCDC142K7229321 | SEDAN FORD TEMPO 1FACP36X7PK160752 | CHEV 4DSD 1G1JC5246V7136732 | VAN PASSENGER CHEV 1GNDM19WXVB139106 | TRUCK CHEV CS-10 #1GCCS1446V8112112 | TRUCK DODGE P/U D150 1B7GE16X7MS297546 | FORD 2DSW 2FMDA51U8WBB57680 | FORD 2DSW 2FMDA5101WBB57079<br>FORD 2DSW 2FMDA5111XWRR57681 | VAN CHEV FR WACKENHUT 16CDM19W0VB229969 | P/U CHEV FR WACKENHUT 1GCCS144XWK114899 | FORD TAURUS-4DR. 1FAFP52U1WG196328 | WGN STA HYUN ELE KMHJW24M3WU109447 | VAN CARGO FORD E-150 1FTRE1468WHB60537 | VAN GMC SAFARI 7 PX 1GKDM19W5XB536318 | MPVH,1999,JEEP 1J4FF28S2YL122051 |           | UNEVROLET INTALAS 261WF35EUT9152168<br>TRLICK CHEV S-10 #1GCCS14W2VK192338 | FORD TAURUS LX 4DR, MODP52 1FAFP5221YG2 | TRUCK FORD RAN X P/U #ITYR14V02PB36000 | VAN 02 CHEV ASTRO #1GCDM19XX2B150572 | VAN 02 CHEV ASTRO #1GCDM19XX2B150662 | CHEVROLET TAHOE, 4 DR, #1GNEK13Z32R1873 | EXPLORER FORD # 1FMZU73W22ZC61841 |           | VAN P DODGE 1D4GP253138101035 Friction Tester | 2003 FORD EXPLORER 1FMZU72K93ZA12274 | TRACTOR EL 100 VIN#1EEEL25X04A043916 | TRUCK FORD EXPLORER 1FMZU72K75UA28828 |                                   | SUV DODGE DURANGO 1D4HB38P66F178178 | SUV DODG DURANGO 1D4HB38P26F178176 | VAN DODGE 1999 2B4GP44G3XR410524 | VAN DODGE 1999 2B4GP44G9XR410527 | VAN DODGE CARAVAN 2B4GP44G8XR411586 '99 | TRUCK FORD RANGER 1FTYR10V2XUA36382 | TRUCK, 1999, FORD, 1FTSW30L7XEB29918 | TRUCK, 1999, FORD, 1FTYR10V5XPB58636<br>TRUICK TOPPE 4 500 #4 D7101 4 5006 17 7 000 | IRUCK μυμυσε 1300 #1 μ/ ΠΑ 105 800 1/ 1038<br>2004 Εγγίλισε ΟΡΟ 4ΕΜΖΙ 173Κ Χ47Δ61905 | TRUCK, 1998, FORD, 1FTYR10VXXPB58633 | SUV SATURN VUE-6 5GZCZ53417S824102 | SUV DODG DURANG 2007 1D8HB38P07F512611 |
|                    | YEAR                                                 | 1995                                    | 1995                              | 1996                                   | 1996<br>1996                                                           | 1996                               | 1996                        | 1996                                 | 1997                                | 1997                                   | 1997                        | 1997                                                        | 1998                                    | 1998                                    | 1998                               | 1998                               | 1998                                   | 1999                                  | 2000                             | 0002      | 2000                                                                       | 2000                                    | 2003                                   | 2003                                 | 2003                                 | 2003                                    | 2003                              | 2003      | 2003                                          | 2003                                 | 2005                                 | 2005                                  | 2002                              | 2006                                | 2005                               | 2006                             | 2006                             | 2006                                    | 2006                                | 2006                                 | 2006                                                                                | 2004                                                                                 | 2007                                 | 2007                               | 2007                                   |
| T.m.s. / John      | 1                                                    | Light                                   | Light                             | Light                                  | Light<br>Light                                                         | Light                              | Light                       | Light                                | Light                               | Light                                  | Light                       | Light                                                       | Liaht                                   | Light                                   | Light                              | Light                              | Light                                  | Light                                 | Light                            | Light     | Light                                                                      | Liaht                                   | Light                                  | Light                                | Light                                | Light                                   | Light                             | Light     | Light                                         | Light                                | Light                                | Light                                 | Light                             | Liaht                               | Light                              | Light                            | Light                            | Light                                   | Light                               | Light                                | Light<br>• i~••                                                                     | Lignt<br>Licht                                                                       | Light                                | Liaht                              | Light                                  |
| Mobiolo            | venicie<br>undei<br>Medium<br>Heav                   |                                         |                                   |                                        |                                                                        |                                    |                             |                                      |                                     |                                        |                             |                                                             |                                         |                                         |                                    |                                    |                                        |                                       |                                  |           |                                                                            |                                         |                                        |                                      |                                      |                                         |                                   |           |                                               |                                      |                                      |                                       |                                   |                                     |                                    |                                  |                                  |                                         |                                     |                                      |                                                                                     |                                                                                      |                                      |                                    |                                        |
| Cub unit Wohiolo   | Venicie<br>(VIP, vundei<br>OMF, Medium<br>etc.) Heav | 175                                     | 177                               | 110                                    | 110                                                                    | 177                                | 100                         | 122                                  | 172                                 | 110                                    | 122                         | 122                                                         | 315                                     | 315                                     | 101                                | 131                                | 501                                    | 110                                   | 100                              | 900       | 310                                                                        | 310                                     | 110                                    | 315                                  | 315                                  | 103                                     | 310                               | 310       | 122                                           | 301                                  | 520                                  | 175                                   | 0/1                               | 175                                 | 131                                | 160                              | 160                              | 110                                     | 110                                 | 175                                  | 131<br>17E                                                                          | 181                                                                                  | 131                                  | 170                                | 174                                    |
| cloidely time deal | ation (VIP, under<br>and) OMF, Medium<br>etc.) Heav  | 3 1 175                                 | 3 1 177                           | 3 1 110                                | 3 1 110<br>3 1 177                                                     | 3 1 177                            | 1 1 100                     | 1 1 122                              | 3 1 172                             | 3 1 110                                | 1 1 122                     | 1 1 100                                                     | 4 1 315                                 | 4 1 315                                 | 1 1 101                            | 3 1 131                            | 4 1 501                                | 5 1 110                               | 4 1 100<br>6 1 500               | 6 1 900   | 3 1 177                                                                    | 4 1 310                                 | 3 1 110                                | 4 1 315                              | 4 1 315                              | 4 1 103                                 | 4 1 310                           | 4 1 310   | 4   104<br>11 122                             | 4 1 301                              | 4 1 520                              | 3 1 175                               | 0 - 1 0<br>2 1 - 1 0<br>2 1 - 1 0 | 3 1 175                             | 3 1 131                            | 2 1 160                          | 2 1 160                          | 5 1 110                                 | 3 1 110                             | 3 1 175                              | 3 1 131                                                                             | 181 15                                                                               | 3 1 131                              | 3 1 170                            | 3 1 174                                |

|                                                                                 |                                      | _                                |                                    |                                                                                |                                        | _                                       |                                    |                                   |                                   |                                   |                                  |           |                | _                                    | _                                       | _                                       | _                                     | _                                     | _                                     | _                                     | _                                    | _                                |                                   |           |                                                                               | _         |                                                                           | _                                  |                           |                               | _                                |                                       | _                                 |                                                                   |                                      |                              |                            |                                    | _                                      |                              |                                         |                                         |                                         |                                                                                   |                                   | _                            |
|---------------------------------------------------------------------------------|--------------------------------------|----------------------------------|------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------|----------------|--------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|-----------|-------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|------------------------------------|---------------------------|-------------------------------|----------------------------------|---------------------------------------|-----------------------------------|-------------------------------------------------------------------|--------------------------------------|------------------------------|----------------------------|------------------------------------|----------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|------------------------------|
| AVERAGE<br>VEHICLE<br>MPG                                                       |                                      | 12.60                            | 11.58                              | 8.55                                                                           | 13.80                                  | 11.72                                   | 17.57                              | 10.06                             | 9.05                              | 11.20                             | 7 60                             | Wed       | Men            | new                                  |                                         |                                         |                                       |                                       |                                       |                                       | 9.40                                 |                                  | 5.58                              | 0.17      | CU.8                                                                          | 9.39      | 3.20                                                                      | 1.76                               |                           | 3.94                          | 4.42                             | 8.24                                  | 5.47                              | 4.47                                                              | 9.58                                 | 25.30                        | 6.93                       | 4.93                               | 0.00                                   | 29.77                        |                                         |                                         |                                         | T                                                                                 | 7.37                              | 1.17                         |
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              |                                      | 251.2                            | 1704                               | 176.3                                                                          | 240.5                                  | 132                                     | 81                                 | 180.8                             | 214.7                             | 448.1                             | nsuff data                       | 0.00      |                |                                      |                                         |                                         |                                       |                                       |                                       |                                       | 365                                  |                                  | 163                               | 0.010     | 822.8<br>150.6                                                                | 450.4     | 77.5                                                                      | 104                                |                           | 691.2                         | 703.5                            | 855.6                                 | 427.8                             | 108                                                               | 445.5                                | 302.5                        | 134                        | 51.5                               | 34.4                                   | 852.9                        |                                         |                                         |                                         | +                                                                                 | 1071.1                            | 30344                        |
| VEHICLE<br>MILEAGE                                                              |                                      | 3165                             | 2594                               | 1508                                                                           | 3318                                   | 1547                                    | 1423                               | 1818.2                            | 1943.8                            | 5016.8                            |                                  | 3388      | 0000           |                                      |                                         |                                         |                                       |                                       |                                       |                                       | 3430                                 |                                  | 910.3                             | 1901      | 1700                                                                          | 4232      | 755                                                                       | 183                                |                           | 2724                          | 3108                             | 7051                                  | 2340                              | 483                                                               | 4265.8                               | 7654.5                       | 928                        | 254                                | 0                                      | 25392                        |                                         |                                         |                                         |                                                                                   | 7894                              | 35402                        |
| EPA<br>RATED<br>MPG                                                             |                                      |                                  |                                    |                                                                                |                                        |                                         |                                    |                                   |                                   |                                   |                                  |           |                |                                      |                                         |                                         |                                       |                                       |                                       |                                       |                                      |                                  |                                   |           |                                                                               |           |                                                                           |                                    |                           |                               |                                  |                                       |                                   |                                                                   |                                      |                              |                            |                                    |                                        |                              |                                         |                                         |                                         |                                                                                   |                                   |                              |
| TYPE<br>FUEL                                                                    |                                      |                                  |                                    |                                                                                |                                        |                                         |                                    |                                   |                                   |                                   |                                  |           |                |                                      |                                         |                                         |                                       |                                       |                                       |                                       |                                      |                                  |                                   |           |                                                                               |           |                                                                           |                                    |                           |                               |                                  |                                       |                                   |                                                                   |                                      |                              |                            |                                    |                                        |                              |                                         |                                         |                                         |                                                                                   |                                   |                              |
| FUEL<br>USAGE                                                                   | E-10                                 | E-10                             | Е-10<br>г 10                       | E-10                                                                           | E-10                                   | E-10                                    | E-10                               | E-10                              | E-10                              | Е-10                              | E-10                             |           |                | E-10                                 | E-10                                    | E-10                                    | E-10                                  | E-10                                  | E-10                                  |                                       | E-10                                 |                                  | Е-10                              |           |                                                                               |           | E-10                                                                      | E-10                               | E-10                      | E-10                          | E-10                             | Е-10                                  | E-10                              | E-10                                                              | E-10                                 | E-10                         | E-10                       | Diesel                             | Diesel                                 | E-10                         | E-10                                    | Diesel                                  | Diesel                                  | Diesel                                                                            | E-10                              | E-10                         |
| FUEL<br>CONFIG                                                                  | E-85                                 | E-85                             | E-85                               | E-85                                                                           | E-85                                   | E-85                                    | E-85                               | E-85                              | E-85                              | E-85                              | Gas<br>F of                      | E-85      | с              | E-85                                 | E-85                                    | E-85                                    | E-85                                  | E-85                                  | E-85                                  |                                       | Gas                                  |                                  | Gas                               | Gas       | Gas                                                                           | Gas       | Gas                                                                       | Gas                                | Gas                       | Gas                           | Gas                              | Gas                                   | Gas                               | Gas                                                               | Gas                                  | Gas                          | Gas                        | Diesel                             | Diesel                                 | Gas                          | Gas                                     | Diesel                                  | Diesel                                  | Diesel                                                                            | Gas                               | Gas                          |
| GVWR                                                                            |                                      |                                  |                                    | _                                                                              |                                        |                                         |                                    |                                   |                                   |                                   |                                  |           | -              |                                      |                                         |                                         |                                       |                                       |                                       | -                                     | -                                    | -                                |                                   |           | _                                                                             |           |                                                                           |                                    |                           |                               |                                  |                                       | -                                 |                                                                   |                                      |                              |                            | _                                  |                                        |                              |                                         |                                         | _                                       |                                                                                   |                                   |                              |
| Vehicle<br>Acquisition<br>Cost                                                  | 35,899.06                            | 51,679.88                        | 19,498.00                          | 5 000 00                                                                       | 5,000.00                               | 13,500.00                               | 5,000.00                           | 22,437.92                         | 22,437.91                         | 50,622.61                         | 8,000.00                         | 27 557 06 | 35 530 89      | 28.485.85                            | 7.200.00                                | 7,200.00                                | 7,000.00                              | 7,000.00                              | 7,000.00                              | 20,592.00                             | 19,199.00                            | 35,500.00                        | 24,639.01                         | 20,342.11 | 32,130.20                                                                     | 20,100.21 | 25,261.82<br>56 487 00                                                    | 147.384.00                         | 7,500.00                  | 27,269.84                     | 23,007.20                        | 36,229.44                             | 27,295.00                         | 49,218.43<br>24 202 06                                            | 36,157.41                            | 21,728.77                    | 21,728.77                  | 55,250.00                          | 43,625.00                              | 32,808.15                    | 68,778.05                               | 98,099.00                               | 98,099.00                               | 90,033.00                                                                         | 31,093.42                         | 30,322.68                    |
| License<br>Plate                                                                | SHC677                               | SHC695                           | SHC711                             | SHC870                                                                         | SHC871                                 | SHC872                                  | SHC903                             | SHC904                            | SHC905                            | SHC906                            | SHD176                           |           | SHD323         | SHD324                               | SHD414                                  | SHD416                                  | SHD417                                | SHD418                                | SHD419                                | SH4830                                | SH7988                               | SH8005                           | SH8056                            |           | 0000010                                                                       |           | SH8401                                                                    | SH8571                             | SH8659                    | SH8728                        | SH8729                           | SH8730                                | SH8773                            | SH8905<br>SH0187                                                  | SH9621                               | SH9677                       | SH9678                     | 6796HS                             | SH9680                                 | SH9701                       | SH9829                                  | SH9855                                  | SH9881<br>CLID882                       |                                                                                   | SH9929                            | SH9991                       |
| MAKE, MODEL, Vehicle Identification Number                                      | SUV 2007 DODGE 1D8HB38P97F512610 OKA | MPVH DODGE VIN 1D8HD38P87F512477 | TRUCK CHEVY 2007 1GCEC14Z37Z166577 | TRUCK CHEV 1 2007 19CHC23037F 124339<br>TRUCK CHEV S-10 2000 1GCCS1451Y8300985 | TRUCK CHEV S-10 2000 1GCCS1453Y8302771 | TRUCK CHEV TAHOE 2002 1GNEK13Z42J314531 | TRUCK CHEVY S-10 1GCCS1450Y8276534 | TRUCK FORD F150 1FTPX12V07KC98170 | TRUCK FORD F150 1FTPX12V27KC98171 | TRUCK FORD F150 1FTPW14V07KC95012 | TRUCK FORD MPVH 1FMPU16L2YL73437 |           |                | TRUCK DODGE 08 VIN 1D3HA18N08J174251 | DODGE STRATUS 2004 VIN 1B3EL36T94N34162 | DODGE STRATUS 2004 VIN 1B3EL36TX4N34162 | SEDAN, FORD TAURUS #1FAFP53205A114037 | SEDAN, FORD TAURUS #1FAFP53225A114038 | SEDAN, FORD TAURUS #1FAFP53245A114039 | TRUCK CHEV CAB/DUMP 1GBHR33K8MF300447 | TRUCK CHEV P/U 3/4 1GCFC24K4SZ112338 | TRUCK P/U CHEV 1GCHC34K5SE108529 | TRUCK FORD F350 1FTJW35HXSEA26906 |           | TRUCK FORD 250 COUP 1FTHX26H25KC15782<br>TELICK FORD P/114ET 1///35H06E163574 |           | KUUK FUKU P/U 1F1JW35H2SEA/7073<br>  VAN FORD ROOM 5 41 1FT1F34  OVHA2854 | TRUCK GMC AERIAL 1GDM7H1J2VJ502749 | VAN DODGE RAM 250 #434035 | TRUCK FORD #1FTJW35H5VEC03723 | TRUCK CHEV P/U 1GCHC34R2VF048768 | TRUCK FORD P/U F250 1FDHX26H3VEC03722 | TRUCK CHEV FLAT 1GBHC34R5VF054830 | VAN CHEV BUCKET #1GCHG39K2W10138/<br>TDLICK CMC 1CTEC11T3YE600661 | TRUCK GMC UTILITY #16THC34R1YF425112 | TRUCK FORD P/UP CAB #K818517 | TRUCK,P/U 1GCGC33R1YF47889 | TRUCK CHEV TOW # 1GBLC34F2UF469586 | TRUCK CHEV FLAT BOOM #1GBLC34FPU459753 | TRUCK CHEV 1GBGC33R4YF481787 | TRUCK, CHEVROLET 2000, 1GBJG31R9Y121065 | HANDI VAN 2000, LT-250 BUS, 1FUSE35F8YH | HANDI VAN 2000, LI-250 BUS, 1FUSE35F4YH | HANDI VAN 2000, LI 230 DUO, I FUOESTATT<br>HANDI VAN 2000 I T-250 RUS 1EDSF36F2YH | TRUCK FORD F350 3FTSW30S31MA51811 | CAB CREW FORD SRW HX2AND VHF |
| YEAR                                                                            | 2007                                 | 2007                             | 2006                               | 2008                                                                           | 2008                                   | 2008                                    | 2008                               | 2008                              | 2008                              | 2008                              | 2008                             | 2008      | 2008           | 2008                                 | 2008                                    | 2008                                    | 2008                                  | 2008                                  | 2008                                  | 1991                                  | 1995                                 | 1995                             | 1995                              | 1995      | 1005                                                                          | 1990      | 2661                                                                      | 1997                               | 1997                      | 1997                          | 1998                             | 1997                                  | 1998                              | 1998                                                              | 2000                                 | 2000                         | 2001                       | 2000                               | 2000                                   | 2001                         | 2001                                    | 2001                                    | 2001                                    | 2001                                                                              | 2001                              | 2001                         |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Light                                | Light                            | Light                              | Light                                                                          | Light                                  | Light                                   | Light                              | Light                             | Light                             | Light                             | Light                            | Light     | l ioht         | Light                                | Liaht                                   | Light                                   | Light                                 | Light                                 | Light                                 | Medium                                | Medium                               | Medium                           | Medium                            | Medium    | Medium                                                                        | Medium    | Medium                                                                    | Medium                             | Medium                    | Medium                        | Medium                           | Medium                                | Medium                            | Medium                                                            | Medium                               | Medium                       | Medium                     | Medium                             | Medium                                 | Medium                       | Medium                                  | Medium                                  | Medium                                  | Medium                                                                            | Medium                            | Medium                       |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 400                                  | 100                              | 176                                | 177                                                                            | 175                                    | 131                                     | 125                                | 173                               | 177                               | 246                               | 101                              | 000       | 181            | 131                                  | 100                                     | 100                                     | 181                                   | 181                                   | 181                                   | 175                                   | 131                                  | 006                              | 175                               | 0/1       | 1/4                                                                           | 0/1       | 171                                                                       | 175                                | 177                       | 177                           | 175                              | 174                                   | 175                               | 110                                                               | 172                                  | 200                          | 160                        | 172                                | 172                                    | 175                          | 100                                     | 105                                     | 105                                     | 105                                                                               | 175                               | 006                          |
| ation<br>and)                                                                   | 7 1                                  | -                                | с<br>С                             | - <del>.</del>                                                                 | 3 1                                    | 3 1                                     | 1                                  | 3 1                               | 3 1                               | 4                                 | , ,<br>,                         |           | - <del>-</del> | - <del>-</del>                       |                                         | -                                       | 3 1                                   | 3 1                                   | 3 1                                   | 3 1                                   | 3<br>7                               | 6 1                              | с<br>С                            |           | <br>v c                                                                       | <br>0 0   | n 4                                                                       | - <del>-</del> ~                   | 3 1                       | 3 1                           | 3 1                              | 9<br>7                                | 3,1                               | ν<br>γ                                                            | - <del>-</del>                       | 7 1                          | 2                          | 3 1                                | 3 1                                    | 3 1                          | - <u>-</u>                              | 4,                                      | 4 4                                     | 4 4                                                                               | - <del>-</del><br>ო               | 6 1                          |
| Loc<br>(Isl)                                                                    | 12 1                                 | 12                               | 12 1                               | 67 1                                                                           | 67 1                                   | 12 1                                    | 67 1                               | 12 1                              | 12 1                              | 12 1                              | 12                               | 1 5       | 10             | 12                                   | 12                                      | 12                                      | 12 1                                  | 12 1                                  | 12 1                                  | 12 1                                  | 12 1                                 | 12                               | 12                                |           | <u> </u>                                                                      |           | 121                                                                       | 12                                 | 121                       | 12 1                          | 12                               | 12 1                                  | 12 1                              | 12                                                                | 12                                   | 12 1                         | 12 1                       | 12 1                               | 12                                     | 12 1                         | 12 1                                    | 121                                     | 121                                     | 10                                                                                | 12                                | 12                           |

| Fuel Report | - A 8.29.08 |
|-------------|-------------|
| REV         | DOT         |

| AVERAGE<br>VEHICLE<br>MPG                                                       | 6.19                                   | 7.80                                 | 4.88                                 |                                                                        | 9.92                                    | 7.15                              |          | 1.1.1                               | 32.19                                 | 80.71                                    | 7.09                              | 8.56                           | 9.72                           | 6.73                                    | 6.45                               | 9.11                                 | 6.01                                 | 6.55                                 | 7.07                           | 7.34                              | 6.94                              | 0.00       | 4 28                   | 5.68                               | 4.64                               | 5.03                               | 4.89                               |                                      |                        |                                     |                                     |                                      |                                         |                                         | 3.12                             |                            |                                  | 10.04                             | 601 70                       | D81.12    |                                                                       |                          |
|---------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|----------|-------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|-----------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------|------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------------|------------------------------|-----------|-----------------------------------------------------------------------|--------------------------|
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              | 1794.3                                 | 362.7                                | 554                                  |                                                                        | 522.5                                   | 236.7                             | 1.004    | 437.8                               | 147.5                                 | 1.182                                    | 337                               | 124.5                          | 254.7                          | 1083                                    | 60                                 | 235.5                                | 182                                  | 287.5                                | 354.1                          | 959.3                             | 205                               | 1115       | 239.9                  | 108                                | 197                                | 06                                 | 118.5                              |                                      |                        |                                     |                                     |                                      |                                         |                                         | 49.4                             |                            | 1                                | 81.5                              | 10                           | 110       | T                                                                     |                          |
| VEHICLE<br>MILEAGE                                                              | 11110                                  | 2830.1                               | 2702                                 |                                                                        | 5183                                    | 1692                              | 7001     | 3401                                | 4748                                  | 0†1.G                                    | 2389                              | 1066                           | 2476                           | 7291                                    | 386.7                              | 2146                                 | 1094                                 | 1882                                 | 2503                           | 7045                              | 1422                              | 232        | 1027.5                 | 613.7                              | 915                                | 453                                | 580                                |                                      |                        |                                     |                                     |                                      |                                         |                                         | 154                              |                            | 0                                | 818                               | 1 01100                      | 80442.4   |                                                                       |                          |
| EPA<br>RATED<br>MPG                                                             |                                        |                                      |                                      |                                                                        |                                         |                                   |          |                                     |                                       |                                          |                                   |                                |                                |                                         |                                    |                                      |                                      |                                      |                                |                                   |                                   |            |                        |                                    |                                    |                                    |                                    |                                      |                        |                                     |                                     |                                      |                                         |                                         |                                  |                            |                                  |                                   |                              |           |                                                                       |                          |
| TYPE<br>FUEL                                                                    |                                        |                                      |                                      |                                                                        |                                         |                                   |          |                                     |                                       |                                          |                                   |                                |                                |                                         |                                    |                                      |                                      |                                      |                                |                                   |                                   |            |                        |                                    |                                    |                                    |                                    |                                      |                        |                                     |                                     |                                      |                                         |                                         |                                  |                            |                                  |                                   |                              |           |                                                                       |                          |
| FUEL<br>USAGE                                                                   | E-10                                   | E-10                                 | E-10                                 | E-10<br>E-10                                                           | E-10                                    | E-10                              |          | E-10                                | Е-10<br>г 10                          | DI-10                                    | E-10                              | E-10                           | E-10                           | E-10                                    | Diesel                             | E-10                                 | E-10                                 | E-10                                 | E-10                           | E-10                              | Е-10<br>г 10                      |            | Diesel                 | E-10                               | E-10                               | E-10                               | E-10                               | Diesel                               | Diesel                 | E-10                                | E-10                                | E-10                                 |                                         |                                         |                                  | E-10                       |                                  | E-10                              | C T                          | Е-10      | E-10                                                                  | 2                        |
| FUEL<br>CONFIG                                                                  | Gas                                    | Gas                                  | Gas                                  | Gas<br>Gas                                                             | Propane/                                | Sas<br>Cas                        | Propane/ | Gas                                 | Gas                                   | Jronano/                                 | ropane/<br>Gas                    | <sup>&gt;</sup> ropane/<br>Gas | <sup>&gt;</sup> ropane/<br>Gas | Gas                                     | Diesel                             | <sup>o</sup> ropane/<br>Gas          | Gas                                  | Gas                                  | Gas                            | -85                               | Gas                               | odS<br>Poo | Diesel                 | Gas                                | Gas                                | Gas                                | Gas                                | Diesel                               | Jiesel                 | Gas                                 | Gas                                 | Gas                                  |                                         |                                         |                                  | Gas                        |                                  | Gas                               |                              | jas       | Gas                                                                   |                          |
| GVWR                                                                            |                                        | Ŭ                                    | Ū                                    |                                                                        |                                         |                                   |          | 0                                   |                                       |                                          | _ 0                               | HO                             | <u> </u>                       |                                         |                                    | <u> </u>                             |                                      | 0                                    |                                |                                   |                                   |            |                        |                                    | 0                                  | 0                                  |                                    |                                      |                        |                                     |                                     |                                      |                                         |                                         |                                  |                            |                                  |                                   |                              |           |                                                                       | -                        |
| Vehicle<br>Acquisition<br>Cost                                                  | 29,940.44                              | 25,418.67                            | 21,867.51                            | 58,355.87<br>58,355.88                                                 | 7,500.00                                | 34 496 40                         |          | 5,500.00                            | 58,088.29                             | 58,088.29                                | 7,000.00                          | 5,500.00                       | 6,000.00                       | 43,619.93                               | 8,500.00                           | 5,500.00                             | 7,500.00                             | 7,500.00                             | 5,500.00                       | 9,000.00                          | 9,000.00                          | 00.000.8   | 51,114.47<br>64 064 01 | 53,473.29                          | 53,473.29                          | 53,473.27                          | 53,473.29                          | 32,669.10                            | 41,821.91<br>27 400 42 | 37.498.42                           | 37,498.42                           | 36,708.57                            |                                         |                                         | 34,880.60                        | 20,449.94                  | 10,269.64                        | 8,264.88                          | 10,684.93                    | 18,020.90 | 14.734.42                                                             | 5,925.00                 |
| License<br>Plate                                                                | SHA559                                 | SHA560                               | SHA709                               | SHB720<br>SHB721                                                       | SHB780                                  | SHB959                            |          | SHC103                              | SHC227                                | 2HU228                                   | SHC304                            | SHC306                         | SHC307                         | SHC316                                  | SHC319                             | SHC340                               | SHC418                               | SHC419                               | SHC420                         | SHC873                            | SHC874                            | 200002     | SHC949                 | SHD242                             | SHD243                             | SHD244                             | SHD245                             | SHD440                               | SHD441<br>SHD441       | SHD443                              | SHD444                              | SHD445                               | division                                | division                                | SH4454                           | SH4819                     | SH4861                           | SH4871                            | SH4875                       | SH4892    | SH4901                                                                | SH5402                   |
| MAKE, MODEL, Vehicle Identification Number                                      | SUV FORD EXCURSION # 1FMNU41S83EA28116 | TRUCK FORD F-350 # 1FTSW31S72ED24254 | VAN FORD CUSTODY # 1FBSS31S92HB64439 | FORD EXCURSION, 1FMNU40S35EB92362<br>FORD EXCURSION. 1FMNU40S35EB92361 | TRUCK FORD F-250 1998 #1FTRF27Z5WKB8822 | TRUCK FORD F350 1FTWW30Y85FB15939 |          | IRUCK F-250 1998 1F IKF27Z0WKB88229 | TRUCK F350 CAB CREW 1FTSW31P96EC37831 | IRUCK F300 CAB CKEW 1F ISW31P / 0EC3/830 | TRUCK F250 1998 1FTRF27Z8XKC12553 | TRUCK F250 1FTRF27Z6WKB88218   | TRUCK F250 1FTRF27Z2WKB88216   | TRUCK FORD F350 HEIL #1FDWW36PX6EB89214 | AMB, 1997, FORD, 1FDKF38F1VED04655 | TRUCK, 1998, FORD, 1FTRF27Z1WKB88224 | TRUCK, 1999, DODG, 3B6KC26Z4XM580706 | TRUCK, 1999, DODG, 3B6KC26Z3XM580700 | VAN FORD VIN 1FBSS31L7WHC07187 | TRUCK CHEV 2000 1GCGC33R2YF488250 | TRUCK CHEV 2000 1GCGC33R0YF490403 |            |                        | TRUCK, FORD F350 1FDWW36Y68EC19174 | TRUCK, FORD F350 1FDWW36Y68EC19175 | TRUCK, FORD F350 1FDWW36Y68EC19176 | TRUCK, FORD F350 1FDWW36Y68EC19177 | TRUCK, 08 DODGE, # 3D6WG36A18G131429 |                        | TRUCK. FORD F250 #1FTSW20788EC19179 | TRUCK, FORD F250 #1FTSW20Y68EC19178 | TRUCK, FORD F250 # 1FTSX20558EB73099 | DODGE STRATUS 2004 VIN 1B3EL36TX4N34162 | DODGE STRATUS 2004 VIN 1B3EL36T94N34162 | TRUCK FORD F/B 1FDWK64PTMVA01441 | AUTO CHEV 1G1AW51WOK624888 | TRUCK FORD P/U 1FIDF15NXGPB32162 | TRUCK CHEV P/U, 1GCCC14D1EJ175415 | TRUCK FORD 1FTCF10E3CRA17954 |           | IRUCK, CHEV F/U, #1900013K00203300<br>TRUCK FORD P/U 1FTFF25HXPA97388 | TRUCK CHEVEROLET PICK UP |
| YEAR                                                                            | 2003                                   | 2003                                 | 2003                                 | 2005<br>2005                                                           | 2006                                    | 2005                              |          | 5002                                | 2006                                  | 2000                                     | 2006                              | 2006                           | 2006                           | 2006                                    | 2006                               | 2006                                 | 2006                                 | 2006                                 | 2007                           | 2008                              | 2008                              |            | 2008                   | 2008                               | 2008                               | 2008                               | 2008                               | 2008                                 | 8002                   | 2008                                | 2008                                | 2008                                 | Dodge                                   | Dodge                                   | 1991                             | 1990                       | 1987                             | 1985                              | 1982                         | 1993      | 1988                                                                  | 1989                     |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Medium                                 | Medium                               | Medium                               | Medium<br>Medium                                                       | Medium                                  | Medium                            | Modium   | Medium                              | Medium                                | Medium                                   | Medium                            | Medium                         | Medium                         | Medium                                  | Medium                             | Medium                               | Medium                               | Medium                               | Medium                         | Medium                            | Medium                            | Medium     | Medium                 | Medium                             | Medium                             | Medium                             | Medium                             | Medium                               | Medium                 | Medium                              | Medium                              | Medium                               |                                         |                                         |                                  |                            |                                  |                                   |                              |           |                                                                       |                          |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 310                                    | 310                                  | 310                                  | 100                                                                    | 179                                     | 160                               |          | 131                                 | 325                                   | 325                                      | 177                               | 110                            | 110                            | 175                                     | 310                                | 110                                  | 110                                  | 110                                  | 160                            | 175                               | 177                               | 0.11       | 181                    | 181                                | 181                                | 181                                | 181                                | 181                                  | 181                    | 181                                 | 181                                 | 181                                  | 100                                     | 100                                     | 175                              | 175                        | 172                              | 131                               | 174                          | G/1       | 172                                                                   | 160                      |
| Location<br>(Island)                                                            | 12 1 4 1                               | 12 1 4 1                             | 12 1 4 1                             | 12 1 7 1<br>12 1 7 1                                                   | 12 1 3 1                                | 12 1 2 1                          |          | 12 1 3 1                            | 12 1 4 1                              | 1. 4 1. 71.                              | 12 1 3 1                          | 12 1 3 1                       | 12 1 3 1                       | 12 1 3 1                                | 12 1 4 1                           | 12 1 3 1                             | 12 1 3 1                             | 12 1 3 1                             | 12 1 2 1                       | 12 1 3 1                          | 12 1 3 1                          |            | 12 1 2 1               | 12 1 3 1                           | 12 1 3 1                           | 12 1 3 1                           | 12 1 3 1                           | 12 1 3 1                             | 12 1 3 1               | 12 1 3 1                            | 12 1 3 1                            | 12 1 3 1                             | 12 1 1 1                                | 12 1 1 1                                | 12 1 3 1                         | 12 1 3 1                   | 12 1 3 1                         | 12 1 3 1                          | 12 1 3 1                     | 12 1 3 1  | 12 1 7 1                                                              | 12 1 2 1                 |

| Vehic<br>und | :le Type (Light,<br>der 8500 lbs, | YEAR | MAKE. MODEL Vehicle Identification Number   | License          | Vehicle<br>Acauisition GV | FUEL   | FUEL      | TYPE | EPA | VEHICLE | VEHICLE<br>FUEL | AVERAGE<br>VEHICLE |
|--------------|-----------------------------------|------|---------------------------------------------|------------------|---------------------------|--------|-----------|------|-----|---------|-----------------|--------------------|
| Mediu<br>He  | ım, 8500-15000,<br>avy 15000+)    |      |                                             | Plate            | Cost                      | CONFIG | USAGE     | FUEL | Ddw |         | CONSUMPTI       | MPG                |
|              |                                   | 2000 | TRUCK CHEV P/UP #278836                     | SH9620           | 21,020.17                 |        |           |      |     |         |                 |                    |
|              | i                                 | 2006 | SUV, 2006, DODG, 1D4HB38P86F178179          | SHC532           | 59,692.33                 |        |           |      |     | 8276    | 836             | 9.90               |
|              | Fire                              | 1989 | TRUCK OSHKOSH T-300<br>TPLICK OSHKOSH T-300 | SH4436<br>SH4436 | 246,153.89<br>81 606 18   | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1000 |                                             | SH4837           | 375 032 08                | Diecel | Diacal    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK OSHKOSH 1500                          | SH4838           | 326.182.20                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1988 | TRUCK OSHKOSH 1988 10T965BH8J1032846        | SH4842           | 277,517.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK CRYW 3,000 SN006724                   | SH4964           | 209,754.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK CF P3000 VIN# 10T9L5EH5L1039994       | SH4966           | 37,592.98                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK CF P3000 VIN#10T9L5EH5L1039994        | SH4966           | 338,340.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK CF P19 VIN# 10T9L5BE1L1039579         | SH4967           | 28,394.08                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 1990 | TRUCK CF P19 VIN#10T9L5BE1L1039579          | SH4967           | 255,541.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 2006 | TRUCK OSHKOSH STI-1500 10TBKAK1X5S08560     | SHC323           | 578,308.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 2007 | TRUCK OSHKOSH STI-3000 10TDKAK126S08982     | SHC530           | 49,099.00                 |        |           |      |     |         |                 |                    |
|              | Fire                              | 2007 | TRUCK OSHKOSH STI-3000 10TDKAK126S08982     | SHC530           | 816,845.00                |        |           |      |     |         |                 |                    |
|              | Fire                              | 2007 | TRUCK OSHKOSH STI-3000 10TDKAK146S08982     | SHC533           | 863,959.00                |        |           |      |     |         |                 |                    |
|              | Fire                              | 2007 | TRUCK OSHKSH STI-1500 10TBKAK117S094494     | SHC869           | 31,578.00                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Fire                              | 2007 | TRUCK OSHKSH STI-1500 10TBKAK117S094494     | SHC869           | 599,975.00                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             |      | TRUCK 91 FORD F800 1FDXK84A4MVA08570        | SH4839           |                           |        |           |      |     |         |                 |                    |
|              | Heavy                             |      | SWEEPER ELGIN STREET VACUUM                 | SH4845           |                           |        |           |      |     |         |                 |                    |
|              | Heavy                             | 1983 | TRUCK 1-1/2T DOD DUMP 1B6WD34T1CS280903     | SH4418           | 15,411.48                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             | 1991 | TRUCK 91 FORD F800 1FDXK84A4MVA08570        | SH4839           | 44,512.60                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             | 1987 | SWEEPER ELGIN STREET VACUUM                 | SH4845           | 81,233.00                 | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             | 2000 | SWEEPER STRG/ELGIN HF42289/J-0138-D         | SH9510           | 121,811.72                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             | 2006 | SWEEPER JOHNSTON 770 1FVAB7BV85DN91764      | SHB908           | 159,894.81                | Diesel | Diesel    |      |     |         |                 |                    |
|              | Heavy                             | 2000 | BOOM TRUCK INTERNATIONAL 0299CT0165         | STATE950         | 225,621.48                |        |           |      |     |         |                 |                    |
|              | Light                             | 1991 | 90' CHEVY BLAZER 4 WHEEL DRIVE LT 10506     | SH4389           | 18,560.00                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1990 | AUTO DODGE DYNASTY 1B3XC46R3LD848259        | SH4823           | 22,910.05                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1989 | BLAZER 2DR 4WD CHEV 1GNCT18Z9K8117925       | SH4954           | 22,240.00                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1984 | TRUCK CHEV CHAS CAB 1GBHK34J1EV139599       | SH4957           | 18,337.04                 |        |           |      |     |         |                 |                    |
|              | Light                             | 1988 | TRUCK P/U CHEV 1GCGV24K6HS158303            | SH4958           | 18,556.84                 |        |           |      |     |         |                 |                    |
|              | Light                             | 1989 | TRUCK P/U 3/4T CHEV 1GCFK24K2KE110968       | SH4960           | 16,667.20                 | (      | -         |      |     |         |                 |                    |
|              | Light                             | 1991 | IRUCK CHEVY S-10 1GCCS14Z1M8Z51817          | SH51/0           | 12,390.58                 | Gas    | н-10<br>- |      |     |         |                 |                    |
|              | Light                             | 1951 | JEEP WILLY'S (G)CJ3A39065                   | SH5567           | 2,825.00                  | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1993 | BLAZER CHEVY 93 1GNDT13W8P2161295           | SH5942           | 21,560.78                 | Gas    | Е-10      |      |     |         |                 |                    |
|              | Light                             | 1993 | CHEVY BLAZER 93 1GND113W1P2161297           | SH5943           | 21,561.77                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1994 | WAGON STATION GMC 94 1GKDT13W4R2512915      | SH6839           | 19,085.00                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1995 | IRUCK 95 GIMC SONOMA 16 ID 19245K528180     | SH/931           | 23,380.00                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1998 | TRUCK 91 DODGE DAKOTA 1B7GG26X6MS291706     | SH8690           | 7,900.00                  | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 1998 | JEEP CHEROKEE '92 1J4FJ28S2NL218899         | SH9030           | 8,300.00                  | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 2001 | SEDAN FORD FOCUS 1FAFP34301W206614          | SH9870           | 14,260.33                 | Gas    | E-10      |      |     |         |                 |                    |
|              | Light                             | 2002 | FORD EXPEDITION XLT SUV                     | SHA349           | 36,695.68                 |        | E-10      |      |     |         |                 |                    |
|              | Light                             | 2003 | TRUCK FORD RANGER 1FTYR44V93PA20989         | SHA688           | 21,722.08                 |        | E-10      |      |     |         |                 |                    |
|              | Light                             | 2003 | FORD EXPLORER 1FMZU72K53UA20868             | SHA689           | 27,287.68                 | E-85   | E-10      |      |     |         |                 |                    |
|              | Light                             | 2007 | TRUCK FORD CREW CAB W/DUMP 1FDWW37Y67EB     | SHC697           | 41,918.79                 |        |           |      |     |         |                 |                    |
|              | Light                             | 2007 | DODGE DURANGO 07' 1D8HB48PX7F537201         | SHC714           | 32,247.71                 | E-85   | E-10      |      |     |         |                 |                    |
|              | Light                             | 2007 | DODGE 1500 QUAD CAB P/U 1D7HU18P97J5324     | SHC715           | 30,813.34                 | E-85   | E-10      |      |     |         |                 |                    |
|              | Light                             | 2008 | FORD EXPEDITION SN#1FMPU16L3YLB73432        | SHD175           | 8,500.00                  | E-85   | E-10      |      |     |         |                 |                    |
|              | Light                             | 2008 | TRUCK FORD F-150 1FTRF14V18KB23873          | SHD290           | 34,563.00                 | E-85   | E-10      |      |     |         |                 |                    |
|              | Light                             | 2008 | TRUCK FORD F-150 1FTRF14V38KB23874          | SHD291           | 27,771.80                 | E-85   | E-10      |      |     |         |                 |                    |
|              | I jaht                            | 2008 | FORD F150 PICKUP 2FTPF17733CA80284          | SHD346           | 8.500.00                  | F-85   | F-10      |      |     |         |                 |                    |

| AVERAGE<br>VEHICLE<br>MPG                                                       |                                       |                                      | new                                                                            |                                         |                                         |                                      |                                       |                                       |                                         | 8.10                                 | 5.86<br>9.48                                                    |                                      |                                      | new                                    |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             |          |                                           |                                          |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
|---------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|--------------------------------|----------------------------|-----------------------------|--------------------------------------|--------------------------------|---------------------------------|------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|-----------------------------------------|---------------------------------|----------------------------------|---------------------------------|--------------------------------|----------------------------|----------------------------------------|-----------------------------|----------|-------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              |                                       |                                      |                                                                                |                                         |                                         |                                      |                                       |                                       |                                         | 566.2                                | 125<br>479 5                                                    | 0.01                                 |                                      |                                        |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             |          |                                           |                                          |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| VEHICLE<br>MILEAGE                                                              |                                       |                                      |                                                                                |                                         |                                         |                                      |                                       |                                       |                                         | 4588                                 | 732.4                                                           |                                      |                                      |                                        |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             |          |                                           |                                          |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| EPA<br>RATED<br>MPG                                                             |                                       |                                      |                                                                                |                                         |                                         |                                      |                                       |                                       |                                         |                                      |                                                                 |                                      |                                      |                                        |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             |          |                                           |                                          |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| TYPE<br>FUEL                                                                    |                                       |                                      |                                                                                |                                         |                                         |                                      |                                       |                                       |                                         |                                      |                                                                 |                                      |                                      |                                        |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             |          |                                           |                                          |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| FUEL<br>USAGE                                                                   | E-10                                  | E-10                                 | E-10                                                                           |                                         |                                         |                                      |                                       |                                       | -                                       | E-10                                 | E-10                                                            | E-10                                 | 2                                    | E-10                                   |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             | 000      | Diesei                                    | Diesel                                   |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| FUEL<br>CONFIG                                                                  | E-85                                  | E-85                                 | Gas                                                                            |                                         |                                         |                                      |                                       |                                       | (                                       | Gas                                  | Gas                                                             | Gas                                  | 000                                  | Gas                                    |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             | 0000     | Diesei                                    | Diesel                                   |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| GWR                                                                             | C                                     | 0                                    | -                                                                              |                                         |                                         |                                      |                                       | 2                                     | <u>ω</u> .                              | 4                                    | <i>∞</i> 0                                                      |                                      | 1 10                                 | 6                                      |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      | 0                              | ~                               |                                          |                                   |                                                                            |                                         | 0                               | 0                                | C                               | 0                              | 4                          | 0                                      | 0                           |          |                                           | 0                                        |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| Vehicle<br>Acquisitior<br>Cost                                                  | 7,500.0                               | 12,000.0                             | 5,500.0                                                                        |                                         |                                         |                                      |                                       | 12,696.5                              | 21,557.9                                | 29,160.5                             | 32,714.2                                                        | 30.963.9                             | 35,001.7                             | 39,560.1                               |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      | 17,217.9                       | 13,716.6                        | 22,303.3                                 | 9,677.4                           | 14,201.6                                                                   | 35,295.0                                | 9,725.0                         | 9,725.0                          | 17,799.6                        | 7,400.0                        | 19,277.4                   | 18,450.0                               | 4,500.0                     | 34,201.1 | 5/6,840.0                                 | 8/1,5/0.5                                |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| License<br>Plate                                                                | SHD347                                | SHD348                               | SHD355<br>SH3417                                                               | SH4418                                  | SH4464                                  | SHB114                               | SHD347                                | SH3417                                | SH4464                                  | SH8057                               | SH8199<br>SH0188                                                | SHB114                               | SHC596                               | SHD354                                 | SH4422                         | SH4431                          | SH4460                                  | SH4905                               | SH4909                          | SH7231                                  | SH8689                         | SH9469                     | SHA952                      | SHC595                               | SH4422                         | SH4431                          | SH4460                                   | SH4462                            | SH4900                                                                     | SH7231                                  | SH7606                          | SH7607                           | SH7820                          | SH8689                         | SH9469                     | SHA361                                 | SHA952                      | SHC395   |                                           | 0000000                                  | SH4832                                 | SH4833                                 | SH4834                                                                          | SH5494                               | SH5494                               | SH9243                               | SHC014                                 |
| MAKE, MODEL, Vehicle Identification Number                                      | FORD EXPEDITION SUV 1FMPU16L4YLB73441 | FORD F150 CREW CAB 1FTRW07603KD09797 | FORD EXPLOREK 2000 1FMIDU/2X0Y2C45/16<br>TRUCK P/U 3/4T FORD 1FTHF26GIDPB08738 | TRUCK 1-1/2T DOD DUMP 1B6WD34T1CS280903 | TRUCK 91 FORD F350 CREWCAB 2FTJWBGH3MCA | TRUCK FORD F-250 2004 4X4 W/DUMP BED | FORD EXPEDITION SUV 1FMPU16L4YLB73441 | TRUCK P/U 3/4T FORD 1FTHF26GIDPB08738 | TRUCK 91 FORD F350 CREWCAB 2FTJWBGH3MCA | TRUCK FORD FLATBED 1FTJW35H7SEA10470 | TRUCK FORD 350 1FTJW35H1SEA77078<br>TRUCK GMC 1GTGC33R1XEO17110 | TRUCK FORD F-250 2004 4X4 W/DUMP BED | TRUCK FLATBED FORD 1FDWF36587EA6V963 | TRUCK FORD 2008 F250 1FDSF21R48ED07178 | TRUCK FORD 86 1FTHF261GPB29549 | TRUCK 87 FORD 1FTCR11T7HUC58456 | TRUCK 91 FORD UTILITY 1FDHF38G3MKA81327 | TRUCK PU CHEVROLET 1G8HJ34W7CS161343 | TRUCK CHEV 86 1GCEK14C5GJ166447 | TRUCK UTIL. GMC 4X4 1CKDT13W9R0513487 1 | TRUCK CHEV 89 1GBJV34J2K121141 | GMC VAN #1GKDM19WXXB536329 | TRUCK FORD 1FTEF15ZTLB95484 | I RUCK FUKU 2007 1F1 SF21P77 EA50163 | TRUCK FORD 86 1F1HF261GPB29549 | IRUCK 8/ FORD 1FICK111/HUC58456 | I RUCK 91 FORD UTILITY 1FUHF38G3MKA8132/ | TRUCK P/U FORD 1F ICK10A/NUC2/896 | TRUCK PU CHEVROLET 1G8HJ34W /CS161343<br>TRUCK CHEV 86 1000EK14056 1166447 | TRUCK UTIL. GMC 4X4 1CKDT13W9R0513487 1 | TRUCK CHEV P/U 1GDC1421RZ259063 | TRUCK CHEV P/U 1GCDC14Z0RZ259006 | TRUCK FORD PU 2FTEF15N9SCA29961 | TRUCK CHEV 89 1GBJV34J2K121141 | GMC VAN #1GKDM19WXXB536329 | TRUCK CHEVY P/U 2002 1GCCS195628167902 | TRUCK FORD 1FTEF15ZTLB95484 |          | I RUCK USHKUSH I-1500 101 BNAN 1255081535 | I RUCK OSHKOSH 1-3000 101 DKAK125S081534 | IRUCK OSHKOSH 1-1500 1019L5BH2L1039553 | TRUCK CF 1-3000 VIN# 1019L5EHOL1040521 | TRUCK CF 1-1300 VIN# 10195351351039333<br>TRUCK CF T-1500 VIN#10T015RH311030550 | TRUCK FIRE Y/W BGFL 1500 VIN #006721 | TRUCK FIRE Y/W BGFL 1500 VIN #006721 | TRUCK FIRE PIERCE #4PICT02M2XA001148 | TRUCK STA1500 STRKER 10TRKAK187S094492 |
| YEAR                                                                            | 2008                                  | 2008                                 | 2008                                                                           |                                         |                                         |                                      | Ford                                  | 1984                                  | 1991                                    | 1995                                 | 1995                                                            | 2004                                 | 2007                                 | 2008                                   |                                |                                 |                                         |                                      |                                 |                                         |                                | GMC                        |                             | 1007                                 | 1987                           | 1988                            | 1991                                     | 1992                              | 1983                                                                       | 1995                                    | 1995                            | 1995                             | 1995                            | 1998                           | 2000                       | 2002                                   | 2004                        | 1002     |                                           | 2006                                     |                                        |                                        |                                                                                 |                                      |                                      |                                      |                                        |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Light                                 | Light                                | Light<br>Medium                                                                | Medium                                  | Medium                                  | Medium                               | Medium                                | Medium                                | Medium                                  | Medium                               | Medium                                                          | Medium                               | Medium                               | Medium                                 |                                |                                 |                                         |                                      |                                 |                                         |                                |                            |                             |                                      |                                |                                 |                                          |                                   |                                                                            |                                         |                                 |                                  |                                 |                                |                            |                                        |                             | ÷        | FILE                                      | i Fire                                   | FIre                                   | FIFE                                   | E LIG                                                                           | Fire                                 | Fire                                 | Fire                                 | Fire                                   |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 101                                   | 101                                  | 101                                                                            | 179                                     | 179                                     | 179                                  | 101                                   | 100                                   | 179                                     | 170                                  | 170                                                             | 179                                  | 170                                  | 179                                    | 179                            | 179                             | 179                                     | 180                                  | 179                             | 180                                     | 179                            | 115                        | 179                         | 6/1                                  | 179                            | 1/9                             | 1/9                                      | 1/0                               | 180                                                                        | 180                                     | 179                             | 170                              | 172                             | 179                            | 115                        | 170                                    | 179                         | 6/1      | 180                                       | 180                                      | 180                                    | 180                                    | 180                                                                             | 180                                  | 180                                  | 180                                  | 180                                    |
| Location<br>(Island)                                                            | 12 2 5 3                              | 12 2 5 3                             | 12 2 0 3<br>12 2 4 3                                                           | 12 2 5 3                                | 12 2 5 3                                | 12 2 5 3                             | 12 2 5 3                              | 12 2 4 3                              | 12 2 5 3                                | 12 2 0 3                             | 12 2 0 3<br>12 2 0 3                                            | 12 2 5 3                             | 12 2 0 3                             | 12 2 4 3                               | 12 2 4 3                       | 2 2 5 3                         | 12 2 5 3                                | 12 2 5 3                             | 12 2 4 3                        | 12 2 0 3                                | 2243                           | 12 2 5 3                   | 57 2 0 3                    | 2 2 4 3                              | 12 2 4 3                       | 2253                            | 2 2 2 3                                  |                                   | 12 2 5 3                                                                   | 12 2 0 3                                | 12 2 5 3                        | 12 2 0 3                         | 12 2 0 3                        | 12 2 4 3                       | 12 2 5 3                   | 12 2 0 3                               | 57 2 0 3                    | 2 2 4 3  | 2 3 1 V                                   | 12 3 1 2                                 | 12 3 1 2                               | 2 1 2 2                                | 10 2 1 2                                                                        | 12 3 3 5                             | 12 3 3 5                             | 12 3 1 2                             | 12312                                  |

|                                                                                 | 1                                      |                                        |                                       |                                        | 1                                      | 1            | Т                                                                  | 1                                                                                | -                                      | 1                    |                                      |                                      | 1                                    |                                        |                                        | 1                                      | 1                                      | 1                                      |                     | T                                      | 1                   | 1                                 | 1                                      | т                                      | 1                                   | Т                                   | T                                   | T                                       | 1                                      | 1                                      | 1                                                                         |                                    |                                     |                                 |                                         | 1                                      |                                    | 1                                     |                                                                                   | -         |                                         | <b>—</b>                                |                                                                                  | <b>—</b>                              | <b>—</b>                                | <b>—</b>                              | _                                 | _         |
|---------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|--------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------|----------------------------------------|---------------------|-----------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------|-----------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------|-----------|
| AVERAGE<br>VEHICLE<br>MPG                                                       |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       |                                                                                   |           |                                         |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       |                                                                                   |           |                                         |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| VEHICLE<br>MILEAGE                                                              |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       |                                                                                   |           |                                         |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| EPA<br>RATED<br>MPG                                                             |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       |                                                                                   |           |                                         |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| TYPE<br>FUEL                                                                    |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       |                                                                                   |           |                                         |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| FUEL<br>USAGE                                                                   |                                        | Diesel                                 | Diesel                                | Diesel                                 | Diesel                                 | Discol       | Discol                                                             | Diesel                                                                           | Diesel                                 | Diesel               | Diesel                               | Diesel                               | Diesel                               | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                                 |                     |                                        |                     | Diesel                            | Diesel                                 | Diesel                                 | E-10                                | E-10                                | E-10                                |                                         | E-10                                   | Е-10                                   | E-10                                                                      | E-10                               | E-10                                | E-10                            |                                         | E-10                                   | c<br>T                             | Е-10                                  | Е-10                                                                              | 2 4       | П-10                                    | 2 4                                     | E-10                                                                             | н<br>10<br>10                         | E-10                                    | E-10                                  | E-10                              |           |
| FUEL<br>CONFIG                                                                  |                                        | Diesel                                 | Diesel                                | Diesel                                 | Diesel                                 | Discel       | Diccol                                                             | Diesel                                                                           | Diesel                                 | Diesel               | Diesel                               | Diesel                               | Diesel                               | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                                 | Diesel                                 |                     |                                        |                     | Diesel                            | Diesel                                 | Diesel                                 | E-85                                | E-85                                | E-85                                |                                         | Gas                                    | Gas                                    | Gas                                                                       | Gas                                | Gas                                 | Gas                             |                                         | Gas                                    |                                    | Gas                                   | Gas                                                                               | 000       | Gas                                     | Cas                                     | Gas<br>Gas                                                                       | Gas                                   | Gas                                     | Gas                                   | Gas                               | 500       |
| GVWR                                                                            |                                        |                                        |                                       |                                        |                                        |              |                                                                    |                                                                                  |                                        |                      |                                      |                                      |                                      |                                        |                                        |                                        |                                        |                                        |                     |                                        |                     |                                   |                                        |                                        |                                     |                                     |                                     |                                         |                                        |                                        |                                                                           |                                    |                                     |                                 |                                         |                                        |                                    |                                       | _                                                                                 |           | _                                       |                                         |                                                                                  |                                       |                                         |                                       |                                   |           |
| Vehicle<br>Acquisition<br>Cost                                                  |                                        | 316,669.37                             | 166,814.76                            | 275,948.80                             | 233,855.80                             | 700 950 00   | 75 204 00                                                          | 224 334 11                                                                       | 41.150.00                              | 49,899.00            | 3,000.00                             | 135,881.00                           | 197,432.00                           | 34,280.85                              | 308,522.00                             | 34,280.85                              | 308,522.00                             | 632,135.00                             | 260,140.66          |                                        |                     | 40,259.84                         | 143,455.00                             | 119,780.29                             | 8,500.00                            | 8,500.00                            | 8,500.00                            | 7,499.52                                | 11,032.13                              | 15,393.98                              | 20,570.00                                                                 | 16.170.00                          | 16,170.00                           | 6,228.65                        | 9,678.33                                | 10,439.60                              | 16,594.00                          | 13,772.36                             | 13,112.30                                                                         | 10,116.00 | 13,112.30                               | 10,116.00                               | 13,772,36                                                                        | 13.772.36                             | 19,486.00                               | 19,177.05                             | 18,535.39                         | 10 177 0F |
| License<br>Plate                                                                | SHC914                                 | SH4832                                 | SH4833                                | SH4833                                 | SH4834                                 | SH4834       | 014040                                                             | SH4855                                                                           | SH4858                                 | SH4859               | SH5494                               | SH5494                               | SH9243                               | SH9856                                 | SH9856                                 | SH9857                                 | SH9857                                 | SHC914                                 | SHD292              | SH4841                                 | SHD292              | SH4831                            | SH4841                                 | SHC628                                 |                                     |                                     |                                     | SH4021                                  | SH4266                                 | SH4380                                 | SH4403                                                                    | SH4409                             | SH4410                              | SH4411                          | SH4426                                  | SH4433                                 | SH4438                             | SH4442                                | CH4443                                                                            |           | он4440<br>СН4447                        |                                         | SH4440<br>SH4449                                                                 | SH4450                                | SH4453                                  | SH4456                                | SH4457                            | CHAARD    |
| MAKE, MODEL, Vehicle Identification Number                                      | TRUCK STA1500 STRKER 10TBKAK187S094492 | TRUCK OSHKOSH T-1500 10T9L5BH2L1039553 | TRUCK CF T-3000 VIN#10T9L5EHOL1040521 | TRUCK CF T-3000 VIN# 10T9L5EHOL1040521 | TRUCK CF 1-1500 VIN# 1019L5BH3L1039559 |              |                                                                    | TRUCK CF 11300 VIN# 1019L3BH2G 1026374<br>TRUCK CF T1500 VIN# 10T9I 5BH2G1028574 | TRUCK YANKEE WALTER CR ORV500 SN725616 | TRUCK FIRE YW 695612 | TRUCK FIRE Y/W BGFL 1500 VIN #006721 | TRUCK FIRE Y/W BGFL 1500 VIN #006721 | TRUCK FIRE PIERCE #4PICT02M2XA001148 | TRUCK FIRE MAJOR1500 4ENDAAA8XY1001848 | TRUCK FIRE MAJOR1500 4ENDAAA8XY1001848 | TRUCK FIRE MAJOR1500 4ENDAAA88Y1001847 | TRUCK FIRE MAJOR1500 4ENDAAA88Y1001847 | TRUCK STA1500 STRKER 10TBKAK187S094492 | AERIAL BUCKET TRUCK | TRK FORD AERIAL BCKT 1FDYL90AXKVA38831 | AERIAL BUCKET TRUCK | TRUCK INTL DUMP 1HTSCNML6NH412551 | TRK FORD AERIAL BCKT 1FDYL90AXKVA38831 | TRUCK #2NPRHZ8X67M731141, 8-CUBIC DUMP | TRUCK, FORD F150 #2FTPF17Z53CA80285 | TRUCK, FORD F150 #2FTPF17Z83CA80281 | TRUCK, FORD F150 #2FTPF17ZX3CA80282 | TRUCK TOYOTA HLUX P/U JT4RN50R6G0158471 | WAGON CHEV CELEBRITY 1G1AW81W1H6116975 | TRUCK FORD BRONCO II 1FMCU14T6HUC72273 | VAN, FURD AERUSTAR TEMDA3TUS5MZAT8329<br>VAN CHEV ASTRO 16NDM1572MR121908 | VAN FORD AEROSTAR 1FMDA118NZA04964 | VAN FORD AEROSTAR 1FMDA11UXNZA04965 | TRUCK P/U CHEV LUV AIR-M #01-02 | TRUCK P/U FORD RANGER 1FTCR11T7GUC95179 | TRUCK DODGE RAM 150 #1B7GD14Y7JS718028 | TRUCK FORD F-350 1FDJF37H2KKB15038 | TRUCK P/U CHEV 1/21 1GCDC14H/LZ230598 | IRUCK P/U CHEV 1/21 1GCUU14H8LZZ3168U<br>TELIOK P/I1 CHEV 1/97 1GCDC14H9I 7930117 |           | TRUCK F/U UNEV 1/21 10000 1401 LEZE3330 |                                         | IRUCK, P/U CHEV 1/21 1GCUU14H9LZZZ9013<br>TRLICK P/U CHEV 1/9T 1GCDC14H6LZ230334 | TRUCK P/U CHEV 1/2T 1GCDC14H3LZ213828 | TRUCK P/U FORD F150 1FTEF14N1MKA35320 A | TRUCK P/U CHEV 1/2T 1GCDK14H6MZ130027 | TRUCK CHEV 1/2T 1GCDK14H1MZ130503 |           |
| YEAR                                                                            |                                        | 1991                                   | 1990                                  | 1990                                   | 1990                                   | 0661         | 1007                                                               | 1987                                                                             | 1973                                   | 1969                 | 1976                                 | 1977                                 | 1999                                 | 2001                                   | 2001                                   | 2001                                   | 2001                                   | 2007                                   | 2008                |                                        |                     | 1992                              | 1989                                   | 2007                                   | 2008                                | 2008                                | 2008                                | 1987                                    | 1987                                   | 1988                                   | 1991                                                                      | 1991                               | 1991                                | 1981                            | 1987                                    | 1998                                   | 1989                               | 1991                                  | 1991                                                                              | 1001      | 1001                                    | 1001                                    | 1991                                                                             | 1991                                  | 1991                                    | 1991                                  | 1991                              | 1001      |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Fire                                   | Fire                                   | Fire                                  | Fire                                   | Fire                                   | FIre<br>Fire |                                                                    | E E                                                                              | Fire                                   | Fire                 | Fire                                 | Fire                                 | Fire                                 | Fire                                   | Fire                                   | Fire                                   | Fire                                   | Fire                                   | Fire                | Heavy                                  | Heavy               | Heavy                             | Heavy                                  | Heavy                                  | Light                               | Light                               | Light                               | Light                                   | Light                                  | Light                                  | Light                                                                     | Liaht                              | Light                               | Light                           | Light                                   | Light                                  | Light                              | Light                                 | Light                                                                             |           | LIGIII<br>Linht                         |                                         | Light                                                                            | Light                                 | Light                                   | Light                                 | Light                             | 1 inht    |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 180                                    | 180                                    | 180                                   | 180                                    | 180                                    | 180          | 170                                                                | 170                                                                              | 180                                    | 180                  | 180                                  | 180                                  | 180                                  | 180                                    | 180                                    | 180                                    | 180                                    | 180                                    | 174                 | 182                                    | 174                 | 182                               | 182                                    | 175                                    | 995                                 | 995                                 | 995                                 | 170                                     | 115                                    | 180                                    | 111                                                                       | 120                                | 100                                 | 180                             | 172                                     | 180                                    | 170                                | 1/0                                   | 1/8                                                                               | 1 0 1     | 140                                     | - 1<br>1<br>1<br>1                      | 178                                                                              | 170                                   | 180                                     | 175                                   | 170                               | 175       |
| Location<br>(Island)                                                            | 12 3 1 2                               | 12 3 1 2                               | 12 3 1 2                              | 12 3 1 2                               | 12 3 1 2                               | 2 1 2 7      | - 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4 | 12 3 6 2                                                                         | 12 3 6 2                               | 12 3 5 6             | 12 3 3 5                             | 12 3 3 5                             | 12 3 1 2                             | 12 3 3 5                               | 12 3 3 5                               | 12 3 5 6                               | 12 3 5 6                               | 12 3 1 2                               | 12 3 1 2            | 12 3 1 2                               | 12 3 1 2            | 12 3 1 2                          | 12 3 1 2                               | 12 3 1 2                               | 12 3 1 2                            | 12 3 1 2                            | 12 3 1 2                            | 12 3 4 5                                | 12 3 1 2                               | 12 3 1 2                               | 12 3 1 2                                                                  | 12 3 1 2                           | 12 3 1 2                            | 12 3 1 2                        | 12 3 1 2                                | 12 3 2 2                               | 12 3 5 6                           | 12 3 2 2                              | 12 3 1 2                                                                          | 1 C C 4   | 12 3 1 2                                | 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 | 12 3 1 2<br>12 3 1 2                                                             | 12 3 3 5                              | 12 3 5 6                                | 12 3 1 2                              | 12 3 5 6                          | 10 3 1 0  |

| MittVenicleVenicleFUELTYPEEPAVenicleFUELTYPEEPAVenicleVenicleMedium, 8500-15000,<br>Heavy 15000+)YEARMAKE, MODEL, Vehicle Identification NumberPlateCostEVELFUELTYPEEPAVehicleVehicleFUELMedium, 8500-15000,<br>Heavy 15000+)1991TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763SH446114,757.08GasE-10PPP5Light1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415,105.24DieselDieselPPP5Light1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415,105.24DieselDieselPPPP11983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415,105.24DieselDieselPPPPP11983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490711,492.00GasE-10PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MittVencie Type (Light<br>hedium, 8500-15000,<br>Heavy 1500+)MaKE, MODEL, Vehicle Identification NumberLicense<br>PlateVehicle<br>AcquisitionVehicle<br>FUELFUEL<br>RATEDTYPE<br>RATED<br>MPGFUEL<br>MPGTYPE<br>RATED<br>MPGMake, MODEL, Vehicle Identification Number1Heavy 1500+)Heavy 1500+)1991TRUCK P/U CHEV 1/2 T 1GCDC14H6NZ112763SH446114, 757.08GasE-10MPGWehicle<br>MPG5Light1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415, 105.24DieselDieselPieselPieselPieselPieselPieselPieselPieselMLEAGE0Light1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415, 105.24DieselDieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPieselPie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Imder 8500 lbs,<br>Medium, 8500-15000,Vence<br>Medium, 8500-15000,FUEL<br>Medium, 8500-15000,TVPE<br>Medium, 8500-15000,FUEL<br>Medium, 8500-15000,TVPE<br>Medium, 8500-1500,FUEL<br>Medium, 8500-1500,TVPE<br>Medium, 8500-1500,FUEL<br>Medium, 8500-1500,TVPE<br>Medium, 8500-1500,FUEL<br>Medium, 8500-1500,TVPE<br>Medium, 8500-1500,FUEL<br>Medium, 8500-150,TVPE<br>Medium, 8500-150,FUEL<br>ModelTVPE<br>MPGFUEL<br>MPGTVPE<br>MPGRATED<br>MPGDLight1993TRUCK P/U CHEV 1/2T 1GCDC14H5NZ112763SH490414,757.08GasE-10PPDLight1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415,105.24DieselDieselPPDLight1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490415,105.24DieselDieselPPDLight1983TRUCK P/U FORD RANGER 1FTCR105SUD23900SH490611,492.00GasE-10PPDLight1993TRUCK P/U FORD RANGER 1FTCR105SUD13870SH549026,196.00GasE-10PPDLight1991STATION WAGON FORD ZFACP7F3MX119540SH549026,196.00GasE-10PPDLight1991STATION WAGON FORD ZFACP7F3MX119540SH549126,196.00GasE-10PPDLight1991STATION WAGON FORD ZFACP7F3MX119540SH549026,196.00GasE-10PPDLight19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Munder B500 lbs,<br>heavy 15000+)         Make, MODEL, Vehicle Identification Number         License         Vehicle<br>Acquisition         Vehicle<br>Full         Full         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Munder 8500 lbs,<br>Medium, 8500-15000,         Venicle<br>Medium, 8500-150,         Venicle<br>Medium, 8500-150,         Venicle<br>Medium, 8500-150,         Venicle<br>Medium, 8500-150,         FUEL         Venicle<br>Medium, 8500-150,         FUEL         FUEL           1         1991         TRUCK P/U FORD RANGER 1FTCR105SUD23900         SH4904         14,757.08         Gas         E-10           1         1983         TRUCK P/U FORD RANGER 1FTCR105SUD23900         SH4904         14,757.08         Gas         E-10           1         1983         TRUCK P/U FORD RANGER 1FTCR105SUD23900         SH4904         11,492.00         Gas         E-10           1         1993         TRUCK P/U FORD RANGER 1FTCR1058DUC13870         SH5472         14,327.00         Gas         E-10           1         Light         1993         TRUCK P/U FORD RANGER 1FTCR1058DUC13870         SH5490         26,196.00         Gas         E-10           1         Light         1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mill       Vehicle       Ulcense       Vehicle       Configure       Vehicle       Configure       Configure       Vehicle       Config       Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| March and Construction         Marker MoDEL, Vehicle Identification Number         License         Vehicle           Meauny 15000+100         Heavy 15000+100         Heavy 15000+100         Vehicle         Acquisition           Meauny 15000+100         Heavy 15000+100         Heavy 15000+100         Heavy 15000+100         Vehicle           Meauny 15000+100         Heavy 15000+100         Heavy 15000+100         Heavy 15000+100         Heavy 15000+100           Meavy 15000+100         Heavy 15000+100         Heavy 15000+100         Heavy 15000+100         Heavy 15000+100           Meavy 15000+100         Heavy 15000+1000         Heavy 15000+100         Heavy 1600         Heavy 1600           Meavy 15000+100         Heavy 15000+100         Heavy 12000+100         Heavy 1600         Heavy 1600           Meavy 15000+100         Heavy 15000+100         Heavy 1600         Heavy 1600         Heavy 1600           Meavy 15000+100         Heavy 15000+100         Heavy 1600         Heavy 1600         Heavy 1600           Meavy 15000+100         Heavy 1600         Heavy 1600         Heavy 1600         Heavy 1600           Meavy 15000+100         Heavy 1600         Heavy 1600         Heavy 1600         Heavy 1600           Meavy 1600         Heavy 1600         Heavy 1600         Heavy 1600         Heavy 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Interfactor         Marke, MoDEL, Vehicle Identification Number         License         Vehicle           Medium, 8500 15000,<br>Heavy 15000+)         YEAR         MAKE, MODEL, Vehicle Identification Number         Plate         Vehicle           Medium, 8500 15000,<br>Heavy 15000+)         1991         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112/63         SH4461         14, 757.08           Light         1993         TRUCK P/U FORD RANGER 1FTCR 105SUD23900         SH43064         15,888.43           D         Light         1983         TRUCK DODGE DUMP 186WD34T6CSSUD239005         SH43064         11,492.00           D         Light         1983         TRUCK DODGE RAM350 187LD34W6DS410748         SH4306         10,327.61           D         Light         1993         TRUCK P/U FORD RANGER 1FTCR 105SUD23800         SH4306         10,327.61           D         Light         1993         TRUCK P/U FORD RANGER 1FTCR 105SUD23800         SH4306         10,327.61           D         Light         1993         TRUCK P/U FORD RANGER 1FTCR 105SUD23800         SH4306         10,327.61           D         Light         1993         TRUCK P/U CHEV 1/2T 1650C134H9PZ119489         SH4307         11,492.00           D         Light         1993         TRUCK P/U CHEV 1/2T 1650C134H9PZ110489         SH4307         11,492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Marker         Marker<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Init         Vence         Lype         Lught         Light         1991         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763         Light         1991         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763         SH44           D         Light         1991         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763         SH46         P         P           D         Light         1991         TRUCK P/U FORD RANGER 1FTCR105SUD23900         SH46         SH46           D         Light         1983         TRUCK DODGE DUMP 1B6WD34T5CS280905         SH46         SH46           D         Light         1983         TRUCK DODGE RAM350 1B7LD34W6DS410748         SH46         SH46           D         Light         1983         TRUCK P/U CHEV 1/2T 1GCDC14H9PZ119489         SH46         SH46           D         Light         1983         TRUCK P/U CHEV 1/2T 1GCDC14H9PZ119489         SH46         SH46           D         Light         1983         TRUCK P/U CHEV 1/2T 1GCDC14H9PZ119489         SH46         SH46           D         Light         1983         TRUCK P/U CHEV 1/2T 1GCDC14H9PZ119489         SH46         SH46           D         Light         1983         TRUCK P/U CHEV 1/2T 1GCDC14H9PZ119489         SH46         SH46         SH46         SH46         SH46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Make         Make         ModeL, Vehicle Identification Number           Medium, 8500-15000,<br>Heavy 15000+)         YE AR         Make, MODEL, Vehicle Identification Number           5         Light         1991         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763           5         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H5NZ112763           5         Light         1983         TRUCK P/U FORD RANGER 1FTCR105SUD23900           6         Light         1983         TRUCK P/U FORD RANGER 1FTCR105SUD23900           7         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110448           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110448           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110448           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110448           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110448           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ110489           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ113489           1         Light         1983         TRUCK P/U CHEV 1/2 T 1GCDC14H9PZ113489           1         Light         1983         TRUCK P/U CHEV 1/2 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Medium, 8500-15000+)<br>Heavy 15000+)<br>Heavy 15000+)<br>Light 1<br>Light |
| <ul> <li>Meduuri, souce 150004)</li> <li>Heavy 150004)</li> <li>Light</li> <li>Light</li> <li>Light</li> <li>Light</li> <li>Light</li> <li>Light</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>CM</b><br><b>CM</b><br><b>CM</b><br><b>CM</b><br><b>CM</b><br><b>CM</b><br><b>CM</b><br><b>CM</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Occation           0         3         1           0         3         3         2           0         3         3         3           0         3         1         2           0         3         1         2           1         2         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| AVERAGE<br>VEHICLE<br>MPG                                                       |                                                                                    | 5.32                                |                                       |                                        | 5.47                                  | 5.17                                   | 4.96                                    |                                      |                                      | 5.74                                       | 5.05                                       | 18.85                                 |                                                                      | 16.06          | 0.01                              |           |                              | 19.76                            |                                        | 13.75                                  | 14.15                                   | 20.75                               | 15.23                            | 17.10                           | 13.05                              | 22.95                                 |                                      | 14.65                                   |                                     |                                         |                                  | insuff date                       |                                        | 16.76                            | 16.21                            | 15.06                             | 16.96                            | 17.77                                   |                                         | 23.72                                   | 12.15                                 | 13.64                             |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------------------------------------|----------------|-----------------------------------|-----------|------------------------------|----------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------|---------------------------------|------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------|----------------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| VEHICLE<br>FUEL<br>CONSUMPTI<br>ON                                              |                                                                                    | 87.2                                |                                       |                                        | 120.3                                 | 91.2                                   | 85.7                                    |                                      |                                      | 264.9                                      | 82                                         | 118.2                                 |                                                                      | 118            | -                                 |           |                              | 571                              |                                        | 411                                    | 147                                     | 165                                 | 98                               | 467                             | 309                                | 497                                   |                                      | 147                                     |                                     |                                         |                                  |                                   |                                        | 471                              | 501                              | 487                               | 475                              | 451                                     |                                         | 255                                     | 87                                    | 91                                |
| VEHICLE<br>MILEAGE C                                                            |                                                                                    | 463.9                               |                                       |                                        | 657.5                                 | 471.3                                  | 425.4                                   |                                      |                                      | 1520                                       | 417                                        | 2228.4                                |                                                                      | 1805           | 200                               |           |                              | 11284                            |                                        | 5664                                   | 2079.4                                  | 3423                                | 1493                             | 7984                            | 4043                               | 11426.6                               |                                      | 2153                                    | 0                                   | 0                                       |                                  |                                   |                                        | 7896                             | 8120                             | 7333                              | 8055                             | 8014                                    |                                         | 6048                                    | 1060                                  | 1241                              |
| EPA<br>RATED<br>MPG                                                             |                                                                                    |                                     |                                       |                                        |                                       |                                        |                                         |                                      |                                      |                                            |                                            |                                       |                                                                      |                |                                   |           |                              |                                  |                                        |                                        |                                         |                                     |                                  |                                 |                                    |                                       |                                      |                                         |                                     |                                         |                                  |                                   |                                        |                                  |                                  |                                   |                                  |                                         |                                         |                                         |                                       |                                   |
| TYPE                                                                            |                                                                                    | DIESEL                              |                                       |                                        |                                       | DIESEL                                 | DIESEL                                  |                                      |                                      | DIESEL                                     | DIESEL                                     | GAS                                   |                                                                      |                |                                   |           |                              | GAS                              |                                        |                                        |                                         |                                     |                                  |                                 |                                    | GAS                                   |                                      |                                         | GAS                                 | GAS                                     |                                  |                                   |                                        | GAS                              | GAS                              |                                   |                                  |                                         |                                         | GAS                                     | GAS                                   | GAS                               |
| FUEL<br>USAGE                                                                   |                                                                                    | DIESEL                              |                                       |                                        | Diesel                                | DIESEL                                 | DIESEL                                  | Diesel                               | Diesel                               | DIESEL                                     | DIESEL                                     | E10                                   | Diocol                                                               | E-10           | ц<br>10<br>10                     |           |                              | E10                              | E-10                                   | E-10                                   | E-10                                    | E-10                                | E-10                             | E-10                            | E-10                               | E10                                   | E-10                                 | E-10                                    | E10                                 | E10                                     |                                  |                                   |                                        | E10                              | E10                              | E-10                              | E-10                             | E-10                                    |                                         | E10                                     | E10                                   | E10                               |
| FUEL<br>CONFIG                                                                  |                                                                                    | DIESEL                              |                                       |                                        | Diesel                                | DIESEL                                 | DIESEL                                  | Diesel                               | Diesel                               | DIESEL                                     | DIESEL                                     | GAS                                   | Dianal                                                               | Dicoci<br>Cipe | Са3<br>Е-85                       | 202       |                              | GAS                              | Gas                                    | Gas                                    | Gas                                     | Gas                                 | Gas                              | Gas                             | Gas                                | GAS                                   | E-85                                 | Gas                                     | GAS                                 | GAS                                     |                                  | Traded in                         |                                        | GAS                              | GAS                              | Gas                               | Gas                              | Gas                                     |                                         | GAS                                     | GAS                                   | GAS                               |
| GWR                                                                             |                                                                                    |                                     |                                       |                                        |                                       |                                        |                                         |                                      | _                                    |                                            |                                            |                                       |                                                                      |                |                                   |           |                              |                                  |                                        |                                        |                                         |                                     |                                  |                                 |                                    |                                       |                                      |                                         |                                     |                                         |                                  |                                   |                                        |                                  |                                  |                                   |                                  |                                         |                                         |                                         |                                       |                                   |
| Vehicle<br>Acquisition<br>Cost                                                  |                                                                                    | 20,910.12                           |                                       |                                        | 371,912.04                            | 322,058.64                             | 171,901.33                              | 238,486.31                           | 178,864.74                           | 63,675.63                                  | 577,500.00                                 | 66,174.58                             | 01 100 01                                                            | 148 118 27     | 21 558 22                         | EE 174 58 | 29 641 48                    | 29,198.00                        | 32,295.00                              | 31,498.00                              | 16,971.76                               | 25,450.00                           | 21,000.00                        | 20,137.52                       | 23,391.42                          | 4,500.00                              | 14,949.90                            | 32,923.21                               | 21,558.22                           | 5,500.00                                | 20,910.12                        | 104,513.18                        | 18,788.51                              | 20,944.97                        | 14,399.00                        | 34,559.20                         | 27,031.08                        | 60,000.00                               | 63,675.63                               | 45,861.16                               | 43,284.10                             | 33.236.50                         |
| License<br>Plate                                                                |                                                                                    | SH4429                              | SH4835                                | SH4836                                 | SH4835                                | SH4836                                 | SH4844                                  | SH4853                               | SH4853                               | SHA3231                                    | SHC465                                     | SHC990                                |                                                                      | CH0158         | 001010                            |           |                              | SH7950                           | SH8093                                 | SH8097                                 | SH8650                                  | SH8886                              | SH8887                           | SH9580                          | SH9625                             | SHB358                                | SHC308                               | SHC688                                  | SSHD127                             | DFL 1391                                | SH4429                           | SH6530                            | SH6864                                 | SH7389                           | SH8019                           | SH9493                            | SH9726                           | SH9893                                  | SHA231                                  | SHB836                                  | SHC168                                | SHC567                            |
| MAKE, MODEL, Vehicle Identification Number                                      | TRK OSHKOSH STI 3000S 10TDKAK105S085601<br>TPK OSHKOSH STI 3000S 10TDKAK105S085601 | TRUCK P/U CHEV 1GCHK33J9GS166518 Y9 | TRUCK CF T3000 VIN# 10T9L5EH8L1040508 | TRUCK OSHKOSH T-1500 10T9L5BH0L1039549 | TRUCK OSHKOSH T3000 10T9L5EH8L1040508 | TRUCK OSHKOSH T-1500 10T9L5BH0L1039549 | TRUCK INTL STRUC PUMP 1HTLDTVN4HHA23940 | TRUCK CF P-19 VIN# 1079L5BE2T1028595 | TRUCK CF P-19 VIN# 1079L5BE2T1028595 | TRUCK P/U FORD 450 VIN: 1FDXW47F1YED455 Y3 | TRK OSHKOSH STI 3000S 10TDKAK105S085601 Y7 | DODGE, 2007, VIN 1D8HD38P67F514888 Y1 | SWEEPER LENNANI 0000-2010/<br>TDLICK INTL DLIMD 1 UTSD72NIOM10325261 |                | TRIICK FORD F150 15TRF10/18KR0066 |           | DODGE 2008 1D8HB38N38E118052 | WAGON STA CHEV 1G1BL82P3SR133674 | WAGON SPORT CHEV 4WD 1GNDT13W3S2242505 | WAGON SPORT CHEV 4WD 1GNDT13W4S2242044 | FORD TAURUS 4DR WHITE 1FALP52UXVA281883 | SEDAN CHEV LUMINA 2G1WL52K7W9188651 | VAN CHEV ASTRO 1GNDM19W6WB130629 | TRUCK P/U GMC 1GTEC14T7YZ147835 | VAN FORD E150 SN 1FTRE1426YHA14184 | TRUCK, FORD 150 VIN:IFTEF15Z1TLB95465 | SEDAN DODGE STRATUS 1B3EL46T86N21542 | TRUCK FORD F-150 CREW 4X4 1FTPW14V86KD9 | TRUCK, FORD F150, 1FTRF12V18KB29966 | TRUCK W/DUMPBED GAS UTILITY S/NRG044746 | TRUCK P/U CHEV 1GCHK33J9GS166518 | TRUCK MSTR CHEV 1GBM7H1J4PJ108956 | TRUCK CHEVY 1TON CAB 1GBHC34K9PE197016 | TRUCK CHAS CAB 1GBGK24KORE304417 | TRUCK P/U CHEV 1GCEC14Z3SZ131272 | TRUCK YUKON GMC 1GKEK13R5XJ791571 | TRUCK P/U CHEV 1GBGK24R4YF486578 | TRUCK P/U FORD F350 SN1FDWF36S51EA30310 | TRUCK P/U FORD 450 VIN: 1FDXW47F1YED455 | TRUCK, FORD P/U-F250 3/4 TON IFTSX21Y95 | TRUCK P/U FORD F250 1FTNF20Y45EB36549 | TRUCK FORD F350 1FDWF36Y97EA52338 |
| YEAR                                                                            |                                                                                    | 1987                                |                                       |                                        | 1990                                  | 1990                                   | 1988                                    | 1986                                 | 1986                                 | 2002                                       | 2006                                       | 2008                                  | 1001                                                                 | 1000           | 8006                              | 2008      | 2008                         | 1994                             | 1996                                   | 1996                                   | 1997                                    | 1998                                | 1998                             | 2000                            | 2000                               | 2005                                  | 2007                                 | 2007                                    | 2008                                | 2005                                    | 1987                             | 1994                              | 1994                                   | 1994                             | 1994                             | 1999                              | 2001                             | 2001                                    | 2002                                    | 2006                                    | 2006                                  | 2007                              |
| Vehicle Type (Light,<br>under 8500 lbs,<br>Medium, 8500-15000,<br>Heavy 15000+) | Fire<br>Fire                                                                       | Fire                                | Fire                                  | Fire                                   | Fire                                  | Fire                                   | Fire                                    | Fire                                 | Fire                                 | Fire                                       | Fire                                       | Fire                                  | Неауу                                                                | Heavy          | l icht                            |           | Light                        | Liaht                            | Light                                  | Light                                  | Light                                   | Light                               | Light                            | Light                           | Light                              | Light                                 | Light                                | Light                                   | Light                               | Medium                                  | Medium                           | Medium                            | Medium                                 | Medium                           | Medium                           | Medium                            | Medium                           | Medium                                  | Medium                                  | Medium                                  | Medium                                | Medium                            |
| Sub unit<br>(VIP,<br>OMF,<br>etc.)                                              | 180<br>180                                                                         | 180                                 | 180                                   | 180                                    | 180                                   | 180                                    | 180                                     | 180                                  | 180                                  | 180                                        | 180                                        | 995                                   | 0/1                                                                  | 170            | 005                               | 005       | 995                          | 170                              | 180                                    | 170                                    | 170                                     | 170                                 | 170                              | 170                             | 111                                | 170                                   | 115                                  | 101                                     | 995                                 | 170                                     | 180                              | 170                               | 170                                    | 170                              | 170                              | 170                               | 170                              | 170                                     | 180                                     | 170                                     | 170                                   | 170                               |
| Location<br>(Island)                                                            | 12 4 0 4<br>12 4 0 4                                                               | 12 4 0 4                            | 12 4 0 4                              | 12 4 0 4                               | 12 4 0 4                              | 12 4 0 4                               | 12 4 0 4                                | 12 4 0 4                             | 12 4 0 4                             | 12 4 0 4                                   | 12 4 0 4                                   | 12 4 0 4                              | 12 4 0 4                                                             |                |                                   |           | 12 4 0 4                     | 12 4 0 4                         | 12 4 0 4                               | 12 4 0 4                               | 12 4 0 4                                | 12 4 0 4                            | 12 4 0 4                         | 12 4 0 4                        | 12 4 0 4                           | 57 4 0 4                              | 12 4 0 4                             | 12 4 0 4                                | 12 4 0 4                            | 12 4 0 4                                | 12 4 0 4                         | 12 4 0 4                          | 12 4 0 4                               | 12 4 0 4                         | 12 4 0 4                         | 12 4 0 4                          | 12 4 0 4                         | 12 4 0 4                                | 12 4 0 4                                | 12 4 0 4                                | 12 4 0 4                              | 12 4 0 4                          |

A-25

HARBORS DIVISION / ACT 96 / FY 07

| DC | DEPT                                         | DC           | DEPT                                 |
|----|----------------------------------------------|--------------|--------------------------------------|
| A  | Agriculture                                  | M8           | DAGS - PW                            |
| В  | Business & Economic Development              | M9           | DAGS - ADMIN                         |
| С  | DLNR - State Parks                           | MF           | DAGS - ICSD                          |
| C1 | DLNR - Admin, LM, HP                         | N            | Attorney General                     |
| C2 | DLNR - DOFAW                                 | 0            | Dept. of Budget & Finance            |
| С3 | DLNR - DOCARE                                | Р            | Dept. of Human Resources             |
| C4 | DLNR - Water Resource                        | Q            | Governor's Office                    |
| C5 | DLNR - Aquatic Resources                     | R            | Dept. of Commerce & Consumer Affairs |
| C6 | DOBOR                                        | s            | Lieutenant Governor                  |
| D  | DOT - Admin                                  | Т            | Dept. of Taxation                    |
| D1 | DOT - Air - Oahu                             | V1           | Dept. of Public Safety               |
| D2 | DOT - Air - Maui                             | z            | Office of Hawaiian Affairs           |
| D3 | DOT - Air - Hawaii (Hilo)                    |              |                                      |
| D4 | DOT - Air - Kauai                            | CLASS CODE   | VEHICLE DESCRIPTION                  |
| D5 | DOT - Air - Maui (Molokai)                   | 3110         | Sedan, Coupe, Station wagon, SUV     |
| D6 | DOT - Air - Maui (Lanai)                     | 3111         | Van (passenger, cargo)               |
| D7 | DOT - Harbors                                | 3113         | Bus (0 - 30 passengers)              |
| D8 | DOT - Air - Keahole                          | 3114         | Bus (31 - 60 passengers)             |
| DA | DOT - HWYS - Oahu                            | 3115         | Bus (over 60 passengers)             |
| DB | DOT - HWYS - Maui                            | 3120         | Truck ( 0 - 10,000 GVW)              |
| DC | DOT - HWYS - Hawaii                          | 3121         | Truck (10,000 - 20,000 GVW)          |
| DD | DOT - HWYS - Kauai                           | 3122         | Truck (20,000 - 45,000 GVW)          |
| DE | DOT - HWYS - Maui (Molokai)                  | 3123         | Truck (over 45,000 GVW)              |
| DF | DOT - HWYS - Maui (Lanai)                    | 3130         | Trailer                              |
| E  | Dept of Education                            | 3140         | Amublance (hospital)                 |
| E1 | DOE - Drivers' Education                     | 3141         | Ambulance (rescue)                   |
| E2 | HSPLS                                        | 3145         | Fire appratus                        |
| F  | University of Hawaii                         | 3150         | Tractor                              |
| F1 | Research Corporation of University of Hawaii | 3170         | Misc.                                |
| G  | Dept. of Defense                             |              |                                      |
| н  | Dept. of Health                              | ISLAND CODES | ISLAND                               |
| нн | Hawaii Health System Corporation             | 1            | OAHU                                 |
| I  | Hawaiian Home Lands                          | 2            | MAUI                                 |
| J  | Judiciary                                    | 3            | HAWAII                               |
| к  | Dept. of Human Services                      | 4            | KAUAI                                |
| К1 | нсрсн                                        | 5            | MOLOKAI                              |
| L  | Dept. of Labor and Industrial Relations      | 6            | LANAI                                |
| м  | DAGS - Surplus Property                      |              |                                      |
| M1 | DAGS - AM (Oahu)                             | <br>OWNER    |                                      |
| M2 | DAGS - CSD (Oahu)                            | S - STATE    |                                      |
| М3 | DAGS - Hawaii District                       | L - LEASED   |                                      |
| M4 | DAGS - Stadium                               | O - OTHER    |                                      |
| M5 | DAGS - Maui District                         |              |                                      |
| M6 | DAGS - Kauai District                        |              |                                      |
| M7 | DAGS - SFCA                                  |              |                                      |

| LIC. NO. | DESCRIPTION              | N                 | Ж  | Class                            | Island | Vehicle<br>Acquisition<br>Cost (\$) | EPA<br>Rated<br>Fuel<br>Economy<br>(MPG)<br>(city/hwy) | Type of<br>Fuel | Milage<br>(Miles) | Fuel<br>Consump<br>tion<br>(GAL) | Actual<br>Fuel<br>Economy<br>(MPG) |
|----------|--------------------------|-------------------|----|----------------------------------|--------|-------------------------------------|--------------------------------------------------------|-----------------|-------------------|----------------------------------|------------------------------------|
| SH 4070  | P/U TRUCK CHEV FLEETSIDE | 1GCCS14R9J2175844 | 88 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$10,094                            | no listing                                             | unl             | 1,272             | 101.15                           | 12.58                              |
| SH 4076  | P/U TRUCK 90 GMC         | 2GTDC14H4L1506485 | 06 | Truck ( 0 - 10,000 GVW)          | HAWAII | 13,675                              | no listing                                             | lnu             | No Longer in u    | se                               |                                    |
| SH 4077  | P/U TRUCK CHEVY          | 1GCDC13H4JE173023 | 88 | Truck ( 0 - 10,000 GVW)          | HAWAII | 10,672                              | no listing                                             | lun             | No Longer in u    | se                               |                                    |
| SH 4078  | P/U TRUCK 92 FORD F-150  | 2FTDF15N1NCA39867 | 92 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$15,556                            | no listing                                             | lun             | 561               | 92.61                            | 6.06                               |
| SH 4955  | TRUCK INT'L CRANE        | D1225GGB13195     | 77 | Truck ( 10,000 - 20,000 GVW)     | HAWAII | \$72,959                            | no listing                                             | diesel          | No Longer in u    | se                               |                                    |
| SH 6901  | P/U CHEV FLATBED         | 1GBG6H1P9RJ104067 | 94 | Truck (20,000 - 45,000 GVW)      | HAWAII | \$30,871                            | no listing                                             | Inu             | 78                | 28.87                            | 2.70                               |
| SH 7027  | P/U TRUCK CHEV           | 1GCDC14H6RZ207273 | 94 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$13,595                            | no listing                                             | lun             | 1,720             | 194.94                           | 8.82                               |
| SH 9716  | SUV ISUZU MPVH           | 4S2DM58W0Y4331777 | 8  | Truck ( 0 - 10,000 GVW)          | HAWAII | \$22,362                            |                                                        | lun             | 7,084             | 503.06                           | 14.08                              |
| SH A865  | P/U TRUCK 250 FORD F-250 | 1FTNW21L73ED60351 | 03 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$24,673                            |                                                        | Inu             | 3,871             | 350.03                           | 11.06                              |
| SH B632  | SUV FORD ESCAPE          | 1FMYU93135KC92881 | 05 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$26,924                            |                                                        | lun             | 8,056             | 518.33                           | 15.54                              |
| SH C815  | PRERUNNER TOYOTA         | 5TEJU62NX7Z408584 | 07 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$25,099                            |                                                        | lun             | 14,357            | 644.17                           | 22.29                              |
| SH C893  | P/U DODGE DAKOTA         | 1D7HE22K67S152786 | 07 | Truck ( 0 - 10,000 GVW)          | HAWAII | \$18,726                            |                                                        | lun             | 2,344             | 175.79                           | 13.33                              |
| A830     | FORD P/U TRUCK           | 1FTYR10U41PA92546 | 01 | Truck ( 0 -10,000 GVW)           | KAUAI  | \$15,375                            | 21                                                     | lun             | 2,581.56          | 209.20                           | 12.34                              |
| C294     | TOYOTA TACOMA P/UP       | 5TENX22N66Z       | 90 | Truck ( 0 -10,000 GVW)           | KAUAI  | \$17,682                            | 19                                                     | lun             | 3,512.00          | 269.30                           | 13.04                              |
| C901     | TOYOTA HIGHLANDER H.BRID | JTEGW21A470015    | 07 | SUV ( 0 - 10,000 GVW)            | KAUAI  | \$35,989                            | 32                                                     | unl/Hybrid      | 516.00            | 30.50                            | 16.92                              |
| SH 7091  | TRUCK FORD STYLESIDE     | 1FTJW36H3REA44107 | 94 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$29,036                            | 13                                                     | GAS             | 2,518.00          | 489.10                           | 5.15                               |
| SH 7094  | TRUCK CHEV STYLESIDE     | 1GCCS19Z2R8199520 | 94 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$16,249                            | 19                                                     | GAS             | No Longer in I    | lse                              | #VALUE!                            |
| SH 8084  | SUV CHEV BLAZER          | 1GNCS13W1S2243585 | 95 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$22,769                            | 17                                                     | GAS             | 4,194.00          | 292.70                           | 14.33                              |
| SH 9245  | P/U CHEV FLATBED         | 1GBHC34R7XF016843 | 66 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$26,680                            | 14                                                     | GAS             | 2,191.00          | 273.90                           | 8.00                               |
| SH 9260  | SUV CHEV BLAZER          | 1GNCS13W2XK159671 | 66 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$32,019                            | 16                                                     | GAS             | 3,046.00          | 272.00                           | 11.20                              |
| SH 9261  | P/U TRUCK CHEV           | 1GBGC24R1CF015029 | 66 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$27,350                            | 14                                                     | GAS             | 6,679.00          | 435.60                           | 15.33                              |
| SH 9671  | TRUCK CHEV               | 1GBGC24R2XF067253 | 66 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$26,817                            | 14                                                     | GAS             | 6,240.00          | 404.80                           | 15.42                              |
| SH 9902  | P/U TRUCK FORD           | 1FTYR10U41PA92546 | 01 | Truck ( 0 - 10,000 GVW)          | KAUAI  | \$15,375                            | 21                                                     | GAS             | 4,342.00          | 337.90                           | 12.85                              |
| SH 4007  | P/U TRUCK FORD           | 1FTEX15H8NKB27063 | 92 | Truck ( 0 - 10,000 GVW)          | MAUI   | \$19,621                            | 12/17                                                  | Gas             | 2,823.00          | 237.30                           | 11.90                              |
| SH 4261  | INTL STAKE               | 1HTLBD4K2EHA61438 | 84 | Truck (10,000 - 20,000 GVW)      | MAUI   | \$20,661                            | N/A                                                    | Gas             | 1,366.00          | 304.94                           | 4.48                               |
| SH 4265  | P/U FORD                 | 1FTEF15YXGPA10688 | 86 | Truck ( 0 - 10,000 GVW)          | MAUI   | \$9,550                             | 18/24                                                  | Gas             |                   | 84.05                            | 0.00                               |
| SH 4267  | P/U TRUCK GMC SONOMA     | 1GTCT19Z9M8509359 | 91 | Truck ( 0 - 10,000 GVW)          | MAUI   | \$17,405                            | 18/24                                                  | Gas             | 1,215.00          | 139.68                           | 8.70                               |
| SH 7090  | SDN OLDS CUTLASS CRUISER | 1G3AJ85M3R6428263 | 95 | Sedan, Coupe, Station wagon, SUV | MAUI   | \$14,765                            | 19/29                                                  | Gas             | 5,763.00          | 337.69                           | 17.07                              |
| SH 7596  | TRUCK GMC                | 1GTFC24Z0SZ511129 | 95 | Truck ( 0 - 10,000 GVW)          | INAUI  | \$20,182                            | 16/21                                                  | Gas             | 2,901.00          | 353.98                           | 8.20                               |
| SH 7597  | TRUCK GMC                | 1GTEC14Z3SZ511132 | 95 | Truck ( 0 - 10,000 GVW)          | INAUI  | \$15,954                            | 16/21                                                  | Gas             | 8,633.00          | 655.54                           | 13.17                              |
| SH 8408  | P/U CHEV                 | 1GCCS14XXVK115298 | 97 | Truck ( 0 - 10,000 GVW)          | MAUI   | \$15,625                            | 17/23                                                  | Gas             | 1,101.00          | 111.51                           | 9.87                               |
| SH 8954  | SUV CHEV BLAZER          | 1GNCS13W8W2228684 | 98 | Truck ( 0 - 10,000 GVW)          | MAUI   | \$31,100                            | 16/20                                                  | Gas             |                   | 779.03                           | 0.00                               |
| SH C447  |                          |                   |    |                                  | MAUI   |                                     |                                                        |                 | 2,649.00          | 379.39                           | 6.98                               |
| SH C611  |                          |                   |    |                                  | MAUI   |                                     |                                                        |                 | 1,755.00          | 244.18                           | 7.19                               |

| Actual<br>Fuel<br>Economy<br>(MPG)                     | 1.63     | 11.6                             | 11.5                             | 7.0                    | 8.4                     | 5.4                     |                         |                         | 8.1                     | n/a                     | 7.2                     | n/a                     | n/a                         | 2.5                         |                             | n/a                         |                             | n/a                     | 8.9                     | 9.0                     | 7.1                    | n/a                     | 8.3                     | 8.2                     | 7.0                     | 8.3                         |                                  | 12.1                             | 95.8                             | 6.4                     | n/a                         | 9.0                    | n/a                     | 7.0                     |
|--------------------------------------------------------|----------|----------------------------------|----------------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-----------------------------|------------------------|-------------------------|-------------------------|
| Fuel<br>Consump<br>tion<br>(GAL)                       | 671.50   | 89.3                             | 91.9                             | 576.0                  | 63.3                    | 104.8                   |                         |                         | 259.1                   | 63.6                    | 196.3                   | 82.3                    | 5.9                         | 115.6                       | -                           | 5.2                         |                             | 652.2                   | 378.8                   | 176.2                   | 50.9                   | 143.8                   | 470.0                   | 526.7                   | 704.9                   | 195.2                       |                                  | 72.6                             | 43.8                             | 911.6                   | 228.7                       | 245.3                  | 48.1                    | 115.7                   |
| Milage<br>(Miles)                                      | 1,092.00 | 1037.5                           | 1061.1                           | 4045.0                 | 533.0                   | 566.0                   | vehicle was idle        | vehicle was idle        | 2101.0                  | n/a                     | 1408.0                  | n/a                     | n/a                         | 289.0                       | vehicle was idle            | n/a                         | vehicle was idle            | odometer<br>brokan      | 3374.5                  | 1578.1                  | 362.3                  | n/a                     | 3912.0                  | 4323.5                  | 4958.0                  | 1620.0                      | used by OCG                      | 875.0                            | 4199.4                           | 5878.0                  | n/a                         | 2197.0                 | n/a                     | 809                     |
| Type of<br>Fuel                                        |          | unleaded                         | unleaded                         | unleaded               | unleaded                | unleaded                | unleaded                | unleaded                | unleaded                | diesel                  | nnleaded                | unleaded                | unleaded                    | unleaded                    | diesel                      | diesel                      | diesel                      | unleaded                | unleaded                | unleaded                | unleaded               | unleaded                | unleaded                | unleaded                | unleaded                | diesel                      | unleaded                         | unleaded                         | unleaded                         | unleaded                | diesel                      | diesel                 | unleaded                | unleaded                |
| EPA<br>Rated<br>Fuel<br>Economy<br>(MPG)<br>(city/hwy) |          | 19/27                            | 19/27                            | 14/18                  | no listing              | no listing              | 15/19                   | no listing              | no listing              | no listing              | 11/13                   | 18/21                   | no listing                  | 11/15                       | no listing                  | no listing                  | no listing                  | 15/19                   | 14/19                   | 14/19                   | 17/22                  | 13/17                   | 13/17                   | 13/17                   | 15/19                   | no listing                  | 21/29                            | 21/29                            | 21/29                            | 12/16                   | no listing                  | no listing             | 15/20                   | 11/15                   |
| Vehicle<br>Acquisition<br>Cost (\$)                    |          | \$18,148                         | \$18,148                         | \$23,799               | \$9,006                 | \$12,785                | \$21,443                | \$12,785                | \$12,785                | \$62,857                | \$16,026                | \$13,724                | \$36,381                    | \$47,618                    | \$28,576                    | \$95,229                    | \$97,017                    | \$21,443                | \$16,838                | \$13,687                | \$5,900                | \$18,192                | \$18,192                | \$18,192                | \$25,187                | \$69,695                    | \$6,300                          | \$6,300                          | \$6,300                          | \$36,145                | \$81,932                    | \$56,655               | \$15,450                | \$8,000                 |
| Island                                                 | MAUI     | OAHU                             | OAHU                             | OAHU                   | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                        | OAHU                        | OAHU                        | OAHU                        | OAHU                        | OAHU                    | OAHU                    | OAHU                    | OAHU                   | OAHU                    | OAHU                    | OAHU                    | OAHU                    | OAHU                        | OAHU                             | OAHU                             | OAHU                             | OAHU                    | OAHU                        | OAHU                   | OAHU                    | OAHU                    |
| Class                                                  |          | Sedan, Coupe, Station wagon, SUV | Sedan, Coupe, Station wagon, SUV | Van (passenger, cargo) | Truck ( 0 - 10,000 GVW) | Truck (over 45,000 GVW) | Truck ( 0 - 10,000 GVW) | Truck ( 0 - 10,000 GVW) | Truck (20,000 - 45,000 GVW) | Truck (10,000 - 20,000 GVW) | Truck (10,000 - 20,000 GVW) | Truck (20,000 - 45,000 GVW) | Truck (20,000 - 45,000 GVW) | Truck ( 0 - 10,000 GVW) | Truck ( 0 - 10,000 GVW) | Truck ( 0 - 10,000 GVW) | Van (passenger, cargo) | Truck ( 0 - 10,000 GVW) | Truck (20,000 - 45,000 GVW) | Sedan, Coupe, Station wagon, SUV | Sedan, Coupe, Station wagon, SUV | Sedan, Coupe, Station wagon, SUV | Truck ( 0 - 10,000 GVW) | Truck (20,000 - 45,000 GVW) | Van (passenger, cargo) | Truck ( 0 - 10,000 GVW) | Truck ( 0 - 10,000 GVW) |
| YR                                                     |          | 93                               | 93                               | 92                     | 86                      | 84                      | 91                      | 84                      | 84                      | 91                      | 87                      | 90                      | 81                          | 06                          | 86                          | 06                          | 82                          | 91                      | 94                      | 94                      | 88                     | 94                      | 94                      | 94                      | 96                      | 66                          | 95                               | 95                               | 95                               | 66                      | 00                          | 01                     | 93                      | 03                      |
| N S                                                    |          | 1FACP57U5PA115878                | 1FACP57U7PA115879                | 1GCGG35K4N7101482      | 1GTDC14N0GF706090       | 1GBGC24M4EJ146308       | 1GDGR33KXMF701050       | 1GBGC24M8EJ146277       | 1GBGC24MXEJ146300       | 1HTSHNHROMH354189       | 1B6KD2455HS446454       | 1GTDC14ZXLZ544867       | 1HTAA17B2BHB25932           | 1FDMF60KXLVA39248           | 1GDJ7D1F8GV505206           | 1HTSDZ3R9LH280523           | 1HTAA19580HAZ1017           | 1GDGR33K9MF701055       | 1GCFC24HXRE121390       | 1GCDG15H0RF115936       | 1GNDM15Z9JB193006      | 1GBGC24K9RE303358       | 1GBGC24K5RE306404       | 1GBGC24K5RE304040       | 1GBHC33R6TF004193       | 1HTSCABL4XH683803           | 1G1LD55M9SY273574                | 1G1LD55M3SY267785                | 1G1LD55M2SY272900                | 1GBHC33J6XF003240       | 1NPGN08X2Y0527575           | 1GCHG39F911133293      | 1GCFC24K5PE221052       | 2FTPF17Z63CA80280       |
| DESCRIPTION                                            | Sweeper  | SDN FORD TAURUS                  | SDN FORD TAURUS                  | VAN CHEV               | P/U GMC                 | P/U CHEV                | P/U TRUCK 91 GMC        | P/U CHEV                | P/U CHEV                | TRUCK INT'L FTBD        | P/U DODGE D250          | TRUCK GMC TC 10703      | TRUCK AERIAL LADDER INTL    | TRUCK FORD F600 W/LIFT      | P/U GMC FLATBED             | TRUCK INT'L 4900 W/BM & JIB | TRUCK INTL AERIAL LIFT      | TRUCK FLATBED GMC       | TRUCK CHEV FLTSIDE      | VAN CHEV                | VAN CHEV ASTRO         | TRUCK CHEV CAB          | TRUCK CHEV CAB          | TRUCK CHEV CAB          | P/U CHEV                | INT'L MSTR KOMATSU PAY LDR  | SDN CHEV CORSICA                 | SDN CHEV CORSICA                 | SDN CHEV CORSICA                 | P/UP CHEV               | TRUCK PETERBILT             | VAN CARGO CHEV         | TRUCK CHEV              | TRUCK FORD              |
| LIC. NO.                                               | Sweeper  | SH 4004                          | SH 4005                          | SH 4055                | SH 4239                 | SH 4244                 | SH 4246                 | SH 4253                 | SH 4254                 | SH 4262                 | SH 4269                 | SH 4270                 | SH 4325                     | SH 4326                     | SH 4330                     | SH 4331                     | SH 5483                     | SH 5485                 | SH 6822                 | SH 6823                 | SH 7031                | SH 7244                 | SH 7245                 | SH 7246                 | SH 8249                 | SH 9328                     | SH 9419                          | SH 9420                          | SH 9421                          | SH 9650                 | SH 9739                     | SH 9899                | SH D103                 | SH D272                 |

# HARBORS DIVISION ACT 96 Vehicle Baseline Data FY 2007 (July 2007 - June 2008)

| Actual<br>Fuel<br>Economy<br>(MPG)                     | 5.7                    |
|--------------------------------------------------------|------------------------|
| Fuel<br>Consump<br>tion<br>(GAL)                       | 59.3                   |
| Milage<br>(Miles)                                      | 340.4                  |
| Type of<br>Fuel                                        | unleaded               |
| EPA<br>Rated<br>Fuel<br>Economy<br>(MPG)<br>(city/hwy) | 11/15                  |
| Vehicle<br>Acquisition<br>Cost (\$)                    | \$8,000                |
| Island                                                 | OAHU                   |
| Class                                                  | Truck (0 - 10,000 GVW) |
| YR                                                     | 03                     |
| NIX                                                    | 2FTPF17Z73CA80286      |
| DESCRIPTION                                            | TRUCK FORD             |
| LIC. NO.                                               | SH D273                |

HARBORS DIVISION ACT 96 Vehicle Baseline Data FY 2007 (July 2007 - June 2008)

PERIOD: 07/01/07 THRU 06/30/08

EOUIPMENT DESCRIPTION...... SERIAL NUMBER..... GVW FUEL..... COST DATE 91812 512 96 GMC SAFART VAN 1GKDM15Z18B542846 Û GASOLINE .00 91812 579 00 CHVY ASTRO VAN 1GNDM19W1YB181166 0 GASOLINE .00 98812 161 91 CHEVY 4WD BLAZER 1GNCT1827M0120050 GASOLINE ¢ 15,729.22 98812 165 92 FORD MP UH EXPLORER AUTO 1FMDU34X3NUC83665 ß GASOLINE 21,219.04 98812 170 92 FORD F150 PICKUP TRUCK 1FTDF15Y9NPA55985 0 GASOLINE 7,732.17 98812 171 92 FORD SEDAN TEMPO 1FAPP36X2NK126779 0 GASOLINE 6,142.87 98812 173 94 DODGE SHADOW SEDAN 1B3AP28D6RN219792 0 GASOLINE 11.356.68 98812 94 PONTIAC GRAND PRIX SEDAN 174 1G2WJ52M6RF258025 o GASOLINE 14,077.82 98812 175 94 GMC PICKUP TRUCK 1/2 TON 1GTDC14H8RZ523807 ô GASOLINE 15,198.00 98812 176 94 GMC CREWCAB PICKUP TRUCK 1GTGC33K5RJ727985 ٥ GASOLINE 20,500.07 98812 177 94 GMC CREWCAB PICKUP TRUCK 1GTGC33KXRJ728002 ٥ GASOLINE 20,942.77 98612 178 94 GMC CREWCAB PICKUP TRUCK 1GTGC33K1RJ738160 0 GASOLINE 20,942.77 98612 179 94 GMC CREWCAB PICKUP TRUCK 1GTGC33K5RJ73B341 0 GASOLINE 20.942.77 98612 180 95 FORD RANGER PICKUP TRUCK 1FTCR14X6SPA12888 0 GASOLINE 13,969.87 98812 181 95 FORD TAURUS 4DR SEDAN 1FALP52U9SG207105 0 GASOLINE 14,761.76 98812 182 95 FORD CREWCAB PICKUP TRUCK 1FTJW35H7SEA34977 Ô GASOLINE 22,239.65 98812 183 95 FORD CREWCAB PICKUP TRUCK 1FTJW35H5SEA34976 0 GASOLINE 22,239.65 98812 184 95 FORD CREWCAB PICKUP TRUCK 1FTJW35H3SEA34975 Ó GASOLINE 22.239.65 98812 186 96 CUSHMAN REFUSE 1CUMH3273TL001507 0 GASOLINE 18,899.45 98812 187 96 CUSHMAN REFUSE 1CUMH3275TL001508 0 GASOLINE 18,881.23 98812 188 97 CHEVROLET CREWCAB PICKUP 1GCGC33F5VF027514 £ GASOLINE 27,633.18 98812 189 97 CHEVROLET CREWCAB PICKUP 1GCGC33F3VF027964 0 GASOLINE 27.633.18 98812 190 97 CHEVROLET PICKUP TRUCK 1GCCS14X3V8170091 0 GASOLINE 14,961,94 98812 192 98 CHEVROLET S10 PICKUP TRUCK 1GCCS14X4W8236486 0 GASOLINE 16,455.00 98812 98 CHEVROLET S10 PICKUP TRUCK 193 1GCCS14X2W8237569 0 GASOLINE 16,455.00 98812 194 98 CHEVROLET CAVALIER 4-DOOR SEDAN 1G1JC5244W7335716 0 GASOLINE 13,922.79 98812 198 99 FORD RANGE PICKUP TRUCK 1FTYR10V7XUB36560 4,740 GASOLINE 16,989,48 98812 199 99 FORD RANGER PICKUP TRUCK 1FTYR10V9XID36561 4,740 GASOLINE 16,997.81 98812 200 99 CUSHMAN 3-WHEEL REFUSE VEHICLE 1CHMH3274XL002508 2,315 GASOLINE 21,800.00 98812 201 00 CHEV PICKUP TRUCK 1GCCS19W4Y8243134 3,620 GASOLINE 20.277.73 00 CHEV MALIBU 4-DR SEDAN 98812 202 1G1ND52J6Y6258330 3,080 GASOLINE 17,648.48 98812 203 00 CHEV MALIBU 4-DR SEDAN 1G1ND52J2Y6257434 3.080 GASOLINE 17,648.48 98812 204 01 FORD EXP SPTS UTIL 4WHDR 1 FMRU16W51LB44913 5,250 GASOLINE 32,588.84 98812 205 02 CHEVY MALIBU 4-DR SEDAN 1G1ND52J72M722857 0 GASOLINE 16,784.16 98812 206 03 CHEVY SILVERADO PICKUP TRUCK 1GCEC14V53Z327146 GASOLINE 0 21,170.00 98812 218 05 FORD PICKUP TRUCK 1FTSF20P66ED83910 0 GASOLINE 38,148,25 98612 219 06 FORD RANGER PICKUP TRUCK 1FTYR44U77PA10586 ø GASOLINE 19,809.33 98612 222 07 FORD F150 PU TRUCK 1FTRF12V97KD42209 û GASOLINE 25,183.04 98812 223 02 CHEVROLET PASSENGER VAN 1GARG39R121196067 0 GASOLINE 8,300.00 98812 224 08 FORD EXPEDITION 1FMFK16578LA08809 ٥ GASOLINE 40.872.52 98812 225 08 FORD F150 PICKUP 1FTPX12V08KC83976 0 GASOLINE 34,430.89 98812 226 08 FORD F150 PICK UP 1FTPX12V28KC83977 GASOLINE n 34,430.89 98812 227 08 FORD F150 PICK UP 1FTPX12V48KC83978 0 GASOLINE 34,430.90 98842 94 KELLY-CRESWELL STRIPPING MACHINE (B4-2T) 127 7319 GASOLINE 0 19,552.45 98842 133 99 MB STRIPING MACHINE 3-1276 GASOLINE 0 18,934,28 98842 01 CUB CADET 60" ROT MOWER 134 46190280001 GASOLINE Ô. 7,573.91 98842 135 01 CUB CADET 60" ROT MOWER 4G190Z80021 0 GASOLINE 7,573.91 98842 142 05 YAMAHA 6KW GENERATOR 253259 ۵ GASOLINE 2,905.19 98842 143 06 MULTIQUIP 9.7KW W/WHEELS GENERATOR 5556151 0 GASOLINE 4.494.76 98842 146 06 CEMENT MIXER MO WHITEMAN AI752965 GASOLINE 3.619.77 98852 122 **94 HYSTER H45XM FORKLIFT** D177807282R GASOLINE n 18,935.48

A-30

----ACQUISITION-----

## HIGHWAYS DIVISION - OAHU DISTRICT E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

## PERIOD: 07/01/07 THRU 06/30/08

ų

|  | - |  |
|--|---|--|
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |
|  |   |  |

|                |      |                                        | · ·                  |        |                      |           |          |
|----------------|------|----------------------------------------|----------------------|--------|----------------------|-----------|----------|
|                |      |                                        |                      |        |                      |           | TOTON    |
| EQUIPN         | ient | DESCRIPTION                            | SERIAL NUMBER        | GVW    | FUEL                 | COST      | DATE     |
| 91812          | 343  | 86 TRUCK: FORD RANGER PICKUP           | 1FTBR10T1GUC95174    | 0      | GASOLINE             | 8 AŬA 65  | 07/01/86 |
| 91812          | 348  | 87 VAN: FORD B150 CLUBWAGON            | 1FMEELTHXWRB41247    | Ő      | GAGOLINE             | 16 226 00 | 07/01/80 |
| 91812          | 368  | 88 TRUCK: CHEVY FLEETSIDE PICKUP       | 160603481.75208184   | Ň      | CASOLINE             | 34 070 60 | 00/04/00 |
| 91812          | 371  | 86 TRUCK: CHEVY PICKUP                 | 100000341100200104   | Ň      | CACOLINE<br>CACOLINE | 14,070.02 | 09/04/88 |
| 91812          | 376  | 89 TRUCK: DODGE D350 RAM RLATBED       | 106D014H)00119400    | Ň      | CASOLINE<br>CASOLINE | 3,925.00  | 08/01/88 |
| 91812          | 378  | 87 SEDAN, CHEV CAVALIER                | 101 1063 10821 40643 |        | GROOT TWD            | 25,402.60 | 03/01/89 |
| 91812          | 381  | 89 TRICK, CMC S15 DICKID               | 102003025207020000   | 0      | GASOBINE<br>GASOBINE | 5,850.00  | 04/01/89 |
| 91812          | 385  | AS WACON, TOYOTA LAND CONTREP CTATION  |                      |        | GASOLINE<br>GASOLINE | 11,487,87 | 06/01/89 |
| 91812          | 389  | 90 VAN, DODGE DIEG DAM                 |                      | 0      | GASOLINE             | 12,069.79 | 09/01/89 |
| 91812          | 391  | 67 PEDAN. CHEV LI                      | 204K03528UK/669/4    | U      | GASODINE             | 19,333.07 | 07/01/90 |
| 91812          | 393  | 90 GEDAN, CUEV LIMINA                  | 2G1WL54TXL9235401    | U      | GASOLINE             | 12,367.83 | 07/23/90 |
| 91912          | 396  | 91 TRUCH, CHEV DIARD                   | 2G1W154T2L9239149    | U<br>Â | GASOLINE             | 12,367.83 | 07/01/90 |
| 91812          | 399  | A PRICE, FORR FISS OR BUCK BIGAR BIGAR | IGNUSTBZ/MOI20262    | 0      | GASOLINE             | 13,936.96 | 07/01/90 |
| 91912          | 402  | 91 TRUCK: FORD F350 CREWCAB FICKUP     | 2FTOW35RXECA97059    | 0      | GASOLINE             | 18,518.81 | 07/01/90 |
| 91812          | 402  | A TRUCK, CORD FIC DICKUP               | 10005192388133650    | 0      | GASOLINE             | 11,871.03 | 07/01/90 |
| 91912          | 407  | SS INCCK: FORD FISO PICKUP             | 1FIDEL5XLJPA33828    | 0      | GASOLINE             | 5,500.00  | 08/01/90 |
| 91812          | 400  | 14 VANA DODOR DAM 250                  | IFAPP36XXJK107875    | 0      | GASOLINE             | 3,000.00  | 08/01/90 |
| 91912          | 410  | SE VAN. OURIN (200                     | 284RB21H8EK265362    | 0      | GASOLINE             | 1,300.00  |          |
| 91812          | 418  | 9] TRUCK, CUEV C 10 DICKUM             | 10820250377167870    | 0      | GASOLINE             | 1,300.00  |          |
| 91917          | 400  | AT TRUCK: CHEV BALL PICKUP             | 100001926/2301283    | U      | GASOLINE             | 12,175.00 |          |
| 91812          | 425  | 91 CEDIN, DOUGE DVALCENT               | 1GNGV26K7MF138634    | U      | GASOLINE             | 19,589.00 | 07/22/91 |
| 91917          | 476  | 91 NAN, CHENRY ACTED                   | 1B3XC46R/MD259412    | 0      | GASOLINE             | 12,434.48 | 09/01/91 |
| 91919          | 433  | 92 WHAT CHEVI ASING DIGHTE             | 1GNDM1926MB212142    | 0      | GASOLINE             | 17,437.00 | 10/14/91 |
| 01012          | 434  | 92 TRUCK: SUNUMA SI92 PICKUP           | IGICS192XN8515479    | 0      | GASOLINE             | 11,965.00 | 05/01/92 |
| 91010          | 430  | 92 TRUCKI CHEV SUBURBAN 4 WD W/AIR     | IGNGKZ6KXNJ334168    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 01010          | 430  | 92 TRUCK: CHEV SUBDREAN 4 WD W/AIR     | 1GNGK26K5NJ334854    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 01010          | 430  | 92 TRUCKY CHEV SUBURBAN 4 WD W/AIR     | 1GNGK26K3NJ335839    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 01012          | 430  | 92 SUBURBAN: CHEV 4W/D W/AIR           | 1GNGK26K1NJ340876    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 21012          | 440  | 92 SUBURBAN: CHEV 4W/D W/AIR           | 1GNGK26KINJ341476    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 21014<br>01017 | 447  | 92 SUBURBANI CHEV 4W/D W/AIR           | 1GNGK26K9NJ341354    | 0      | GASOLINE             | 21,875.07 | 07/01/92 |
| 21012          | 44.5 | 92 VAN: CHEVY SPORT                    | 2GNDG15K7N4164196    | 0      | GASOLINE             | 16,602.59 | 08/01/92 |
| 91012          | 445  | 92 TRUCK: CHEV CREWCAB PICKUP          | 1GCGC33K6NJ350383    | 0      | GASOLINE             | 19,962.98 | 12/01/92 |
| 91812          | 449  | 93 TRUCK: FORD FISU PICKUP             | 1FTDF15Y2PLA66160    | Q      | GASOLINE             | 10,365.84 | 05/18/93 |
| 21010<br>21017 | 450  | 93 TRUCK: FORD F150 FICKUP             | 1FTDF15Y4PLA66161    | 0      | GASOLINE             | 10,369.84 | 04/01/93 |
| 21217          | 451  | 93 TRUCK: FORD F150 PICKUP             | 1FTDF15Y6PLA66162    | 0      | GASOLINE             | 10,369.84 | 04/01/93 |
| 91914<br>91914 | 452  | 93 TRUCK: FORD F150 PICKUP             | 1FTDF15Y8PLA66163    | 0      | GASOLINE             | 10,369.84 | 04/01/93 |
| 91817          | 453  | 93 TRUCK: FORD F15 PICKUP              | 1FTDF15Y5PLA66167    | 0      | GASOLINE             | 10,853.44 | 04/01/93 |
| AT815          | 454  | 93 VAN: FORD AEROSTAR                  | 1FMCA11U1PZB27844    | 0      | GASOLINE             | 13,801.84 | 05/01/93 |
| 9181S          | 455  | 93 VAN: FORD AEROSTAR                  | 1FMCA11U5PZB27846    | 0      | GASOLINE             | 14,351.00 | 05/01/93 |
| 91812          | 458  | 93 STATION WAGON: FORD TAURUS          | 1FACP57UXPG245846    | 0      | GASOLINE             | 13,488.80 | 05/01/93 |
| 91812          | 459  | 93 SEDAN: CHEVROLET LUMINA 4 DR        | 2G1WL54T3P9206344    | 0      | GASOLINE             | 11,890.70 | 05/01/93 |
| 91812          | 460  | 93 SEDAN: CHEVROLET LUMINA 4DR         | 2G1WL54T1P9204866    | 0      | GASOLINE             | 11,890.70 | 05/01/93 |
| 91812          | 461  | 93 SEDAN: CHEVROLET LUMINA 4 DR        | 2G1WL54T8P9205142    | 0      | GASOLINE             | 11,890.70 | 05/01/93 |
| 91812          | 462  | 93 SEDAN: CHEVROLET LUMINA 4 DR        | 2G1WL54T0P9208147    | 0      | GASOLINE             | 11,916.75 | 05/01/93 |
| 91812          | 468  | 93 TRUCK: FORD RANGER PICKUP           | 1FTCR10X7PUC48318    | 0      | GASOL INE            | 11,059.36 | 07/01/93 |
| 91812          | 472  | 93 TRUCK: FORD RANGER PICKUP           | 1FTCR10A1PUC48312    | 0      | GASOLINE             | 9,393.28  | 05/01/93 |
| 91812          | 475  | 93 TRUCK: FORD RANGER PICKUP           | 1FTCR10A7PUC48315    | 0      | GASOLINE             | 9,393.28  | 05/01/93 |
| 91812          | 477  | 93 SEDAN: CHEV CAVALIER 4DSD           | 1G1JC5443P7315150    | 0      | GASOLINE             | 8,888.00  | 08/01/93 |
| 91812          | 480  | 93 SEDAN, CHEV CAVALIER 4DSD           | 1G1JC5441P7317057    | Û      | GASOLINE             | 8,888.00  | 08/01/93 |
| 91812          | 481  | 93 SEDAN: CHEV CAVALIER 4DSD           | 1G1JC5443F7318341    | 0      | GASOLINE             | 8,888.00  | 08/01/93 |
| 91812          | 482  | 93 SEDAN: CHEV CAVALIER 4DSD           | 1G1JC544XP7319129    | 0      | GASOLINE             | 9,663.00  | 08/01/93 |
| 91812          | 483  | 93 SEDAN: CHEV CAVALIER 4DSD           | 1G1JC5445P7319183    | 0      | GASOLINE             | 8,888.00  | 08/01/93 |
|                |      |                                        |                      |        |                      |           |          |

PERIOD: 07/01/07 THRU 05/30/08

-

.

.

|        |      |            |                                         |                    |             |                   | ACQ015171              | NO   |
|--------|------|------------|-----------------------------------------|--------------------|-------------|-------------------|------------------------|------|
| EQUIP  | ient | DE         | SCRIPTION                               | SERIAL NUMBER      | GVW         | FUBL              | COST                   | DATE |
| 98862  | 103  | 85         | STOW CONCRETE MIXER                     | 850275             | 0           | GASOLINE          | 2.597.92               |      |
| 98862  | 109  | 00         | SPRAYER JOHN BEAN CHEMICAL              | DM10E300FE         | 0           | GASOLINE          | 12,780.43              |      |
| 98862  | 110  | 00         | SPRAYER JOHN BEAN CHEMICAL              | JB02338NJ          | 0           | GASOLINE          | 12,780,43              |      |
| 98862  | 121  | 02         | MOTOR OUTBOARD NISSAN 18-HP             | 07262              | 0           | GASOLINE          | 2,694.78               |      |
| 98862  | 124  | 06         | HOT WATER PRESSURE WASHER, SHARK 3500   | S0106-117175       | 0           | GASOLINE          | 4,999,97               |      |
|        |      |            |                                         |                    |             |                   | FUEL TYPE TOTAL        |      |
| 91822  | 204  | 94         | INTERNATIONAL DUMP TRUCK                | 1HTGGA2T6RH571307  | 0           | DIESEL            | .00                    |      |
| 91822  | 208  | 94         | TRUCK: INT'L UNDERBRIDGE REACHALL CRANE | lhtgga6T2RH548438  | 77,000      | DIESEL            | 428,900.34             |      |
| 91822  | 218  | 95         | INTERNATIONAL DUMP TRUCK                | 1RTGGAUT6SH641780  | 0           | DIESEL            | .00                    |      |
| 95822  | 158  | 03         | PETERBILT TRUCK W/ASPEN AERIAL BODY     | 1NPZX0TX53D714739  | 0           | DIESEL            | 607,831.53             |      |
| 98812  | 172  | 94         | CHEVY FLEETSIDE 4WD PICKUP TRUCK        | 1GCHK34F4RE122826  | 0           | DIESEL            | 27,914.67              |      |
| 98812  | 191  | 97         | 97 CHEVY CHASSIS CAB P/U                | 1GBGC24F5VE242247  | 8,600       | DIESEL            | 27,027.95              |      |
| 98812  | 195  | 99         | CHEVROLET VAN (PASSENGER)               | 1GAHG39F7X1037504  | 0           | DIESEL            | 32,261.00              |      |
| 98812  | 196  | 99         | CHEVROLET SUBURBAN WAGON                | 3GNFK16R0XG153863  | 0           | DIESEL            | 31,391.42              |      |
| 98812  | 197  | 99         | CHEVROLET VAN (CARGO EXT.)              | 1GCHG39FXX1039531  | 0           | DIESEL            | 51,983.00              |      |
| 98812  | 207  | 04         | DODGE CREWCAB PU TRUCK                  | 3D7MA48C14G117954  | 0           | DIESEL            | 33,560.20              |      |
| 98812  | 208  | 04         | DODGE CREWCAB PU TRUCK                  | 3D7MA48C34G117955  | 0           | DIESEL            | 33,560.20              |      |
| 98812  | 209  | 04         | FORD EXCURSION 4X4 SUV                  | 1FMSU41P04ED77684  | 0           | DIESEL            | 40,372.64              |      |
| 98812  | 210  | 04         | FORD F350 CREWCAB PU TRUCK              | 1FTWW32P74ED29680  | 0           | DIESEL            | 33,129.15              |      |
| 98812  | 211  | 04         | FORD F350 CREWCAB PU TRUCK              | 1FTWW3ZP44ED29684  | 0           | DIESEL            | 33,129,15              |      |
| 98812  | 212  | 04         | STAR TIGER 3-WHEEL UTILITY DUMP TRUCK   | LSCAA10D53A038841  | 0           | DIESEL            | 29,982.10              |      |
| 98812  | 213  | 05         | FORD TAURUS 4-DR SEDAN                  | 1FAFP53225A303675  | 0           | DIESEL            | 16.343.64              |      |
| 98812  | 214  | 05         | FORD RANGER P/U TRUCK                   | 1FTYR44U05PA81710  | 0           | DIESEL            | 21,345,00              |      |
| 9881.2 | 215  | 06         | FORD F350 CREW CAB P/U                  | 1FTWW30P56EA03205  | 0           | DIESEL            | 33,836,52              |      |
| 98812  | 216  | 05         | FORD F350 CREW CAB P/U                  | 1FTWW30P36EA03204  | 0           | DIESEL            | 33.836.52              |      |
| 98812  | 217  | 05         | FORD F350 CREW CAB P/U                  | 1FTWN30P16EA03203  | 0           | DIESEL            | 33,836,52              |      |
| 98812  | 220  | 06         | FORD F350 PICKUP TRUCK                  | 1FTWW30P26ED69946  | 0           | DIESEL            | 38,601.87              |      |
| 98812  | 221  | 06         | FORD F350 PICKUP TRUCK                  | 1FTWW30946ED69933  | 0           | DIESEL            | 38,601.87              |      |
| 98822  | 117  | 90         | INTERNATIONAL DUMP TRUCK 2-1/2 C.Y.     | 1HTSAZPLOLH229524  | 0           | DIESEL            | 39.666.89              |      |
| 98822  | 118  | 91,        | INTERNATIONAL 7 C.Y. DUMP               | 1HTSDZ7N3MH326954  | 0           | DIESEL            | 43.635.69              |      |
| 98822  | 119  | 91         | INTERNATIONAL 7 C.Y. DUMP               | 1HTSDPBR2NH405984  | 0           | DIESEL            | 47 843 74              |      |
| 98822  | 120  | 91         | INTERNATIONAL FLATBED DUMP W/CRANE      | 1HTGELGR9MH395506  | ő           | DIESEL            | 103 972 68             |      |
| 98822  | 121  | 92         | CHEVY FLATBED STAKE TRUCK               | 1GBJC34.76NE208530 | ů           | DIESEL            | 25 442 36              |      |
| 98822  | 122  | 92         | CHEVY FLATBED STAKE TRUCK               | 108,7034,720207896 | 0           | DIESEI.           | 20,342.30              |      |
| 98822  | 1.23 | 92         | INTERNATIONAL 2000 GAL TANK TRUCK       | 1HTGEA2R4PH471407  | 0           | DIEGEL            | 77 921 50              |      |
| 98822  | 124  | 94         | INTERNATIONAL TRUCK TRACTOR 9300        | 24558868287087207  | 0           | DIPORT.           | 77,031.00              |      |
| 98822  | 125  | 94         | GMC FLATBED STAKE TRUCK                 | 1GDKC34R0B.1510450 | 0           | DINGED<br>DIFERT. | 77,303.44              |      |
| 98822  | 126  | 99         | INTL DIMP TRUCK 2.50 CV                 | 1HTSCABLSYNGAOOA1  | ő           | DIBODU            | 6/,4/4.04<br>50 600 33 |      |
| 98822  | 127  | 99         | INTL W/ AFRIAL BICKET TRUCK             | 1 UTGDAADAYUGAGGGG | 0           | DIESEL            | 153 707 63             |      |
| 98822  | 128  | 00         | TATTEDNATIONAL CAR & CUASEI             | 1VTCDADDAVUD1040C  | 0           | DIROPT            | 154,767.63             |      |
| 98822  | .129 | 02         | CMC DING TDUCK                          | 100020100021502510 | 0           | DINGNI            | 78,971.04              |      |
| 99822  | 130  | 02         | CMC DIME TRUCK                          | 1000200201002018   | U<br>20 000 | DIESEL            | 84,154.60              |      |
| 98822  | 121  | 64<br>64   |                                         | 1002/110920515444  | 35,000      | DIESEL            | 100,376.85             |      |
| 00022  | 130  | 0 I<br>0 I | EORD REAMBED ON CHARLENGE ON THE MOULT  | INTWANDR240091021  | 20,200      | DIESEL            | 114,895.88             |      |
| 98822  | 133  | 03         | TOND FIRIDAD CAD/CHASDIS STAKE TRUCK    | LPDAF46F63ED88427  | U           | DIESES            | 41,328,90              |      |
| 00000  | 133  | 43<br>02   | TRUCK FRIERDIET DURF                    | ZNPLHZ8X45M856U61  | U           | DIESEL            | 102,608.29             |      |
| 20022  | 134  | 02         | ONG REARDER TRUCK                       | IGUESCI265P528165  | 0           | DIESEL            | 57,894.68              |      |
| 20022  | 732  | 09<br>Ar   | ONG ADDITOR TRUCK                       | 1GDE5C1225F528454  | 0           | DIESEL            | 57,894.68              |      |
| 20022  | 130  | V0         | GRU SERVICE TRUCK                       | 1GDM7C1326F429665  | 0           | DIESEL            | 198,643.00             |      |
| 26832  | 137  | 07         | PETERBILT TRUCK TRACTOR                 | 1XPFD40X47D673734  | 0           | DIESEL            | 134,190,05             |      |
| 96842  | 114  | 81         | INTERNATIONAL TRACTOR W/BROOM           | CHAB006811         | 0           | DIESEL            | 19,418.49              |      |

A-32

----ACQUISITION-----

PERIOD: 07/01/07 THRU 06/30/08

----ACQUISITION-----EOUIPMENT DESCRIPTION..... SERIAL NUMBER..... GVW PUEL..... COST DATE 96842 116 83 MILLER ARC WELD MACHINE W/TRAILER JD688685 Û DIESEL 5.460.00 98842 125 92 CASE UTILITY TRACTOR W/MOWER JJE0025508 DIESEL 0 3.544.91 98842 126 93 KUBOTA W/SIDE AND REAR FLAIL 20353 DIESEL 0 35,344.88 98842 128 93 FORD TRACTOR W/ROTARY MOWER BD61180 a DIESEL 32,200.73 98842 129 93 CASE TRACTOR W/SIDE AND REAR FLAIL JJE0032530 ۵ DIESEL 42,244.92 98642 130 94 MILLER ARC WELDING GENERATOR TRAILER MTD 700619 0 DIESEL 9,533.35 98842 131 96 CASE TRACTOR W/ SIDE & REAR FLAIL MOWER JJE0924453 0 DIESEL 59.697.54 98842 132 98 CASE TRACTOR MOWER W/SIDE REAR FLAIL JJE0929986 0 DIESEL 61.410.02 96842 136 02 TRACTOR CASE W/FLAIL MOWER JJE1018545 DIESEL 0 64,062.09 98842 137 04 KUBOTA 4X4 W/REAR MOWER TRACTOR 55707 û DIESEL. 45,040.85 98842 138 04 KUBOTA W/REAR MOWER TRACTOR 11066 0 DIESEL 45,327.82 98842 139 04 CUB CADET 54" MOWER 2H253Z80004 0 DIESEL 7,300.00 98842 140 05 NEW HOLLAND UTIL TRCTR W/REAR ROT MOWER HJS035642 0 DIESEL 44.791.38 98842 141 05 NEW HOLLAND UTIL TRCTR W/REAR ROT MOWER HJS035653 DIESEL ٥ 44.791.38 98842 144 06 MILLER WELDER GENERATOR, TRLR MOUNTED ð DIESEL 36,830.00 98842 147 94 JOHN DEERE 6200 TRACTOR W/FLAIL MOWER 0 DIESEL. .00 98842 148 07 UTILITY TRACTOR WITH SIDE AND REAR MOWER 877101851 DIESEL 86,301.53 0 07 UTILITY TRACTOR WITH SIDE AND REAR MOWER 96842 149 HJT104966 0 DIESEL 86,301.53 98852 88 MOTOR GRADER - CAT 120G 119 087V08556 DIESEL 90.732.07 Û 98852 120 90 CASE 621 FRONT END LOADER JAK0021304 DIESEL 0 67,588.76 98852 121 91 CASE LOADER/BACKHOE 4X4 JJG0071106 ۵ DIESEL 61,913.74 98852 123 94 CAT 214 ROLLER VIBRATORY 09XK00136 ۵ DIESEL 29,744.00 98852 124 94 JOHNSON SWEEPER 1JSVM4H21RC041016 DIESEL 0 139,500.45 98852 125 96 LOADER/BACKHOE JOHN DEERE 310D T0310DB824852 0 DIESEL 60,033.00 96852 126 98 PORTABLE AIR COMPRESSOR W/TRAILER 289280UDI219 DIESEL 0 14.000.94 98852 127 85 INTL SWR HYPRO JET VACUUM TRUCK 1HTLDTVR4FHA62673 0 DIESEL 108.923.36 00 CHAMPION MOTOR GRADER 98852 128 30826 ۵ DIESEL 111,250.35 98852 130 02 CASE 521D LOADER JEE0134193 0 DIESEL 99,061.86 98852 04 BOMAG BW120 VIBRATORY ROLLER 131 101170519763 0 DIESEL 32.291.46 98852 132 04 LEEBOY 685 COMPACT GRADER 68541778 0 DIESEL 94.009.82 98652 133 04 GMC SWEEPER 1GDM7F1395F500635 0 DIESEL 211,069.46 98852 134 05 CASE LOADER/BACKHOE N5C386017 ß DIESEL 87,499.44 98852 05 KOMATSU WHEEL LOADER 135 65912 0 DIESEL 96.353.55 98852 136 07 PETERBILT HYDRO JET VACUUM TRUCK 1NPAL00X37D673739 0 DIESEL 326.148.08 98852 137 06 GMC SWEEPER TRUCK 1GDM7F1386F431454 DIESEL 0 219.109.96 98852 138 06 HAMM VIBRATORY ROLLER 1395680 DIESEL. .00 0 98852 139 07 EXCAVATOR TAKEUCHI TB175 17516092 0 DIESEL 106,978.78 98862 108 99 MORBARK BRUSH CHIPPER TRLR MNTD 03327 0 DIESEL 30,103.97 98862 116 04 LIGHT TOWER ALLMAND 1380PR003 a DIESEL 8,700.00 98862 04 LIGHT TOWER ALLMAND 117 1381PR003 0 DIESEL 8.700.00 98862 118 06 LIGHT TOWER ALLMAND P0505090008 DIESEI. 0 10.863.64 98862 119 06 LIGHT TOWER ALLMAND P0506140011 ٥ DIESEL. 10,863.65 FUEL TYPE TOTAL 98842 145 06 TRANTEX THERMOPLASTIC STRIPING MACHINE K8548 · PROPANE 37,988.00 0 FUEL TYPE TOTAL 98812 991 07 MISCELLANEOUS DIESEL FUEL CHARGE 0 NOT APPLICABLE .00 98812 07 MISCELLANEOUS REGULAR GAS CHARGE 992 0 NOT APPLICABLE .00 98822 991 07 MISCELLANEOUS DIESEL FUEL CHARGE 0 NOT APPLICABLE .00 98822 992 07 MISCELLANEOUS REGULAR GAS CHARGE 0 NOT APPLICABLE .00

A-33

## PERIOD: 07/01/07 THRU 06/30/08

. ...

、

|       |      |                                            |                    |         |                 | ACQUISI               | FION |
|-------|------|--------------------------------------------|--------------------|---------|-----------------|-----------------------|------|
| EQUIP | ENT  | DESCRIPTION                                | SERIAL NUMBER      | GVW     | FUBL            | COST                  | DATE |
| 98832 | 107  | 91 LOAD KING LONGOY TRATLER                | 1847.4822082116761 | 0       |                 | 20 604 24             |      |
| 98832 | 108  | 94 ZIEMAN MSTL TRAILER                     | 12011251492017736  | Д       | NOT APPLICABLE  | 29,394.74             |      |
| 98832 | 110  | 96 SHOPBUILT WEIGHT SCALE TRAILER          | 18980161328364445  | 0       | NOT AFFIITCABLE | 16 110 00             |      |
| 98832 | 111  | 99 TRAIL KING DUMP TRAILER                 | 17/77302328085139  | 0<br>0  | NOT APPLICABLE  | 10,110,93             |      |
| 98832 | 112  | 02 HOMADE UTILITY TRATLER                  | UNKNOWN A7KXSKM    | 1 200   | NOT ADDITCADE   | 40,045.00             |      |
| 98832 | 113  | 04 ZIEMAN TRAILER                          | 18CE21E2248P25185  | 2 340   | NOT APPLICABLE  | 6 724 22              |      |
| 98832 | 114  | 04 ZIEMAN TRAILER                          | 18CE20E2748P25371  | 4,510   | NOT ADDLICADLE  | 0 054 11              |      |
| 98832 | 115  | 04 BRIMAR DUMP TRAILER                     | 43200302750039431  | 0       | NOT ADDLICADLE  | 0,034.TT              |      |
| 98832 | 116  | 03 CHILTON UTILITY TRAILER                 | 14000081230001097  | 0       | NOT AFFLICADLE  | 3 500 00              |      |
| 98832 | 117  | 05 CARNAI GALV BOAT TRAILER                | 5FMBT2J1151507317  | ő       | NOT APPLICABLE  | 1 015 60              |      |
| 98832 | 11.8 | 07 TRAIL KING TRAILER                      | 1TK-T047207M077305 | 17 180  | NOT APPLICABLE  | 1,013.02<br>12        |      |
| 98832 | 119  | 06 ECONOLINE TRAILER                       | 42ETDBN4263001090  | T1, T00 | NOT APPLICADES  | 12,302.15             |      |
| 98832 | 120  | 07 TRAILER ZIEMAN UTILITY                  | 12072192472227732  | 0       | NOT ADDLICABLE  | 0 142 69              |      |
| 98832 | 121  | 07 TRAILER ZIEMAN UTILITY                  | 12072182172827666  | 0       | NOT APPLICABLE  | 3,143.05<br>11 956 AA |      |
| 98832 | 122  | 07 TRAILER ZIEMAN RAMP                     | 12CE34E2X78E27771  | ů<br>n  | NOT APPLICABLE  | 22 031 10             |      |
| 98832 | 991  | 07 MISCELLANEOUS DIESEL FUEL CHARGE        | 1000040/01/01/1/12 | ő       | NOT APPDICABLE  | ZZ,V3I.10             |      |
| 98832 | 992  | 07 MISCELLANEOUS REGULAR GAS CHARGE        |                    | 0       | NOT APPLICABLE  | .00                   |      |
| 98842 | 991  | 07 MISCELLANBOUS DIESEL FUEL CHARGE        |                    | ů<br>n  | NOT ADDITCABLE  | .00                   |      |
| 98842 | 992  | 07 MISCELLANEOUS REGULAR GAS CHARGE        |                    | ů       | NOT APPLICABLE  | .00                   |      |
| 98852 | 115  | 02 MESSAGE BOARD, TRAILER MOUNTED          | 4GM2M151321408505  | ů.      | NOT ADDLICABLE  | 24 921 28             |      |
| 98852 | 116  | 87 JD 544D FRONT END LOADER                | 513368             | 0       | NOT APPLICABLE  | 58.289.01             |      |
| 98852 | 117  | 87 S4-6B TANDEM ROLLER                     | R25002U061757      | 0       | NOT ADDLICARLE  | 30,505.01             |      |
| 98852 | 129  | 00 COMPRESSOR NAPA 80 GAL                  | 075438             | 0       | NOT APPLICABLE  | 2 029.74              |      |
| 98852 | 991  | 07 MISCELLANEOUS DIESEL FUEL CHARGE        |                    | ů       | NOT APPLICABLE  | 1,0 <u>2,01</u> ,4    |      |
| 98852 | 992  | 07 MISCELLANEOUS REGULAR GAS CHARGE        |                    | Ô       | NOT APPLICABLE  | .00                   |      |
| 98862 | 111  | 01 ITCP SPEED CONTROL MONITOR TRLR MTD     |                    | 0       | NOT APPLICABLE  | 11.999.00             |      |
| 98862 | 112  | 01 ITCP SPEED CONTROL MONITOR TRLR MTD     |                    | 0       | NOT APPLICABLE  | 11 999 00             |      |
| 98862 | 113  | 02 MESSAGE BOARD, TRAILER MOUNTED          | 4GM2M151X21408503  | Õ       | NOT APPLICABLE  | 24,921,28             |      |
| 98862 | 114  | 02 MESSAGE BOARD, TRAILER MOUNTED          | 4GN2M151121408504  | 0       | NOT APPLICABLE  | 24 921 28             |      |
| 98862 | 115  | 02 MESSAGE BOARD, TRAILER MOUNTED          | 4GM2M151321408505  | ů.      | NOT APPLICABLE  | 24 921 28             |      |
| 98862 | 120  | 04 BOAT KLAMATH 14' ALUMINUM               | KLOBO308L304       | 0       | NOT APPLICABLE  | 4.576.02              |      |
| 98862 | 122  | 06 MESSAGE BOARD, TRAILER MOUNTED 3027     | ~                  | 0       | NOT APPLICABLE  | 24 753.00             |      |
| 98862 | 123  | 06 MESSAGE BOARD, TRAILER MOUNTED 3028     |                    | 0       | NOT APPLICABLE  | 24,753.00             |      |
| 98862 | 125  | 06 PORTABLE TRAFFIC SIGNAL-TRAILER MOUNTED | 10981A0A361496011  | 0       | NOT APPLICABLE  | 33 834.51             |      |
| 98862 | 991  | 07 MISCELLANEOUS DIESEL FUEL CHARGE        |                    | 0       | NOT APPLICABLE  | .00                   |      |
| 98862 | 992  | 07 MISCELLANEOUS REGUALE GAS CHARGE        |                    | 0       | NOT APPLICABLE  | .00                   |      |

FUEL TYPE TOTAL .

----ACOUISITION -----EOUIPMENT DESCRIPTION...... SERIAL NUMBER...... GVW FUEL........ COST DATE 93812 102 01 FORD F-150 P/UP TRUCK 1FTRX17W31KB07259 GASOLINE 0 25,271.17 08/10/01 93812 94 TRUCK, GMC 3/4 TON PICK UP 103 1GTGC24K4RE510557 0 GASOLINE 23,500.00 94812 110 99 FORD F-150 PICKUP TRUCK 1FTRF17WOXKB67057 GASOLINE 06/25/99 ۵ 21,261.96 94812 112 04 JEEP LIBERTY 4 DR SUV 1J4GL48K34W285101 GASOLINE ٥ 23,480.06 94832 103 80 TRAILER, TANK SPRAYER ETNYRE BIT M3269 M-3269 GASOLINE ٥ 9,591.00 08/23/80 94842 101 75 WELDER, AIRCO ARC GAS RF838958 ٥ GASOLINE 2,340.00 09/20/75 94862 104 02 300 EL CHEMICAL SPRAYER TRATLER 4PBTC191113000078 û GASOLINE 9.028.87 07/02/01 95812 157 91 TRUCK, CUSHMAN REFUSE DUMP UT 1CUMH327011000718 0 GASOLINE 14,063.10 01/07/91 95812 159 91 SEDAN, CHEV SPECTRUM 4DR J81RG5172J7542099 û GASOLINE 01/14/91 3.400.00 95812 168 93 SEDAN, CHEV LUMINA 4 DR 2G1WL54T6N9253039 0 GASOLINE 15,853.56 07/01/93 95812 178 94 WAGON, JEEP CHEROKEE UTILITY 4X4 1J4FJ28S5RL169641 ۵ GASOLINE 18,594.35 02/18/94 95812 179 94 WAGON, CHER SP 1J4FJ28S7RL169642 ٥ GASOLINE 18,594.35 02/18/94 95812 182 95 WAGON, CHEVROLET SUBURBAN 4X4 1GNGK26K4RJ395960 ٥ GASOLINE 25,260.57 07/15/94 95 TRUCK, CHEVROLET S-10 1/2TON PICKUP 95812 184 1GCCS14Z6S8254239 0 GASOLINE 12,715.13 08/09/95 95812 188 98 CHEV PICK-UP EXT. CAB 1FCEC19M7WE252235 0 GASOLINE 22,469.00 08/24/98 95812 191 98 CHEV S-10 PICK UP TRUCK 1GCCS14X6WK251560 GASOLUNE ٥ 16,101.98 10/22/98 95812 192 98 CHEV S-10 PICK-UP TRUCK 1GCCS14X9WK253125 ۵ GASOLINE 16,101.98 10/22/98 95812 193 98 CHEV S-10 PICK-UP TRUCK 1GCCS14X1WK253197 o GASOLINE 16,101.98 10/22/98 95812 194 98 CHEV S-10 PICK-UP TRUCK 11GCCS14XWK254302 ø GASOLINE 16,101.98 10/22/98 95812 197 99 CHEV SILVERADO 1/2 TON PICK UP 1GCEC14T9XZ121977 ٥ GASOLINE 22/22/99 20,148.00 95812 198 99 CHEV SILVERADO 1/2 TON PICK UP 1GCEC14T2XZ124137 GASOLINE 0 20.148.00 02/22/99 95812 199 99 JEEP CHEROKEE 4 DR S/W 1J4FT2850XL578122 GASOLINE ø 23,977,97 04/08/99 95812 200 99 JEEP CHEROKEE 4 DR S/W 1J4FT28S9XL578121 0 GASOLINE 23.977.97 04/08/99 95812 201 99 JEEP CHEROKEE 2 DOOR S/W 1J4FT27S2XL578124 0 GASOLINE 23,487.35 04/08/99 95812 202 99 FORD RANGER PICKUP TRUCK 1FTYR10V0XUB36559 GASOLINE Ô. 16,497.81 06/15/99 95812 203 99 FORD F-150 PICKUP TRUCK 1FTRF17W9XKB67056 0 GASOLINE 21,261.96 06/21/99 95812 205 99 CHEV P/UP W/EXT, CAB 1GCCS19X9X8198182 ۵ GASOLINE 19,739.46 07/29/99 95812 207 00 CHEV 1/2 TON PICKUP TRUCK 1GCEC14V5YZ295015 GASOL INE 0 19,955.44 07/21/00 95812 208 00 CHEV 1/2 TON PICKUP TRUCK 1GCEC14V7YZ296649 ۵ GASOL INE 19,955.42 07/21/00 95812 209 00 CHEV 1/2 TON PICKUP TRUCK 1GCEC14V8YZ295171 0 **GASOLINE** 19 955 42 07/21/00 95812 211 02 FORD RANGER 4X4 P/UP TRUCK 1FTYR45E52PB00478 0 GASOLINE 23,114.75 09/20/02 95812 214 05 FORD F150 FLEETSIDE 1FTRF12W85NA04806 0 GASOLINE 20.828.39 95812 215 04 FORD RANGER S/C P/UP 4 DR 1FTZR44V24PB43451 GASOLINE 0 22.744.55 95812 06 DODGE PICK-UP TRUCK 216 1D7HA18N56J201603 0 GASOLINE 27,936.28 95812 217 06 FORD ESCAPE MPVH 1FMYU96H96KD56285 ۵ GASOLINE 34,826.58 95812 220 08 FORD F-150 PICK-UP TRUCK 1FTRF14W87LD42210 ٥ GASOLINE 26,720.53 95812 221 08 FORD ESCAPE HYBRID SUV 4WD 1FMCU59H68KB80071 GASOLINE 0 34,251.87 95812 222 08 FORD ESCAPE HYBRID SUV 4WD 1FMCU59H48KB80070 GASOLINE ٥ 34.251.86 95812 224 08 CHEV MALIBU 4 DR SEDAN 1G12G57B78F165648 GASOLINE 3.440 26,235.00 95822 120 81 TRUCK, INT 1724 CREWCAB STAKE DUMP 1HTAA17BOBHB33852 0 GASOLINE 22,944.36 03/23/82 95832 107 94 TRAILER, ZIEMAN TILT 1ZCT31A21P2P17416 0 GASOLINE 15,890.07 08/27/93 95832 114 06 TRAIL KING TRAILER 1TKJ047227M077306 0 GASOLINE 69,894.15 95842 146 94 STRIPER, KELLY-CRESSWELL W/TRACTION BDC 7440 GASOLINE 01/07/94 Ô 11,190.00 95842 150 96 ERADICATOR ROBIN 1098158 GASOLINE Ô. 7,209.00 11/08/96 95842 96 GENERATOR HONDA 151 5/37583 GASOLINE 11/08/96 0 2,945.00 95842 157 99 MD DOUBLE GUN STRIPER MACHINE W/TRAILER 14DAC0819XC000230 Ô GASOLINE 13,667.00 08/26/99 95842 182 06 MCGREGGOR HERBICIDE SPAYER TRAILER RS335708 ۵ GASOLINE 25,812.33 06 MCGREGGOR HERBICIDE SPRAYER, SKID MNTD 95842 183 R\$300702 ۵ GASOLINE 21.979.03 95862 113 02 300 EL CHEMICAL SPRAYER, TRAILER 4PBTC191X13000080 n. GASOLINE 9,028.87 09/25/01 95862 02 300 EL CHEMICAL SPRAYER, TRAILER 114 4PBTC191313000079 ٥ GASOLINE 9,028.88 09/25/01 95862 115 02 STONE CONCRETE MIXER W/TRAILER 092002139 GASOLINE 5,208.30 06/28/02

A-35

PERIOD: 07/01/07 THRU 06/30/08

| <br>2 | ÷ |
|-------|---|

.

PERIOD: 07/01/07 THRU 06/30/08

| •              |            |      |                                          |                                         |        |                   | ACQUISI                | TION     |
|----------------|------------|------|------------------------------------------|-----------------------------------------|--------|-------------------|------------------------|----------|
| EQUIPM         | ENT        | DE   | SCRIPTION                                | SERIAL NUMBER                           | GVW    | FUEL              | COST                   | DATE     |
|                |            |      |                                          |                                         |        |                   |                        |          |
|                |            |      |                                          |                                         |        |                   | FUEL TYPE TOTA         | ΥĽ.      |
| 93822          | 104        | 97   | INTERN'L 2 1/2 CY DUMP TRK(TRANS FM MAUI | 1HTSCABL1VH453066                       | 0      | DIESEL            | 46.598.86              | 03/24/97 |
| 93842          | 106        | 06   | CASE IN TRACTOR MOWER                    | HFJ038654                               | 0      | DIESEL            | 52,708,00              | 00/44/27 |
| 93842          | 107        | 06   | CASE IN TRACTOR MOWER                    | HFJ038662                               | 0      | DIESEL            | 46,353,87              |          |
| 93852          | 102        | 00   | JCB WHEEL LOADER W/FRONT BUCKET & DOZER  | SLP41100YE0527687                       | 0      | DIESEL            | 70.520.38              | 09/25/00 |
| 94812          | 109        | 99   | CHEV CREWCAB 1 TON PICKUP                | 1GCGC33F9XF061524                       | 0      | DIESEL            | 30,390,43              | 05/27/99 |
| 94812          | 111        | . 92 | CHEVY 3/4 TON PICK-UP TRUCK              | 1GEGK24J9NE194985                       | 0      | DIESEL            | 27.871.81              | 11/06/92 |
| 94822          | 108        | 94   | TRUCK, GMC KODIAK 7CY                    | 1GBP7HIJ3RJ104008                       | 0      | DIESEL            | 45,411,69              | 02/11/94 |
| 94822          | 109        | 95   | TRUCK, INT'L 4700 2 1/2CY DUMP           | 1HTSCABL2SH658116                       | ō      | DIESEL            | 37,476,51              | 01/27/95 |
| 94822          | 110        | 97   | INTERNATIONAL 2 1/2 CY DUMP TRUCK        | 1HTSCABL5VH453068                       | ō      | DIRSEL            | 46,807,19              | 03/24/97 |
| 94822          | 112        | 04   | TRUCK, PETERBUILT WATER TANKER           | 1NPLHZ8X95M852586                       | 0      | DIESEL            | 119.255.32             |          |
| 94822          | 113        | 06   | PETERBUILT DUMP TRUCK                    | 2NPLHZ8X37M673737                       | · 0    | DIRSEL            | 119.353.59             |          |
| 94842          | 108        | 93   | TRACTOR. KUBOTA W/FLAIL MOWER            | 12944                                   | Ő      | DIRSEL            | 18.499.60              | 03/19/93 |
| 94842          | 109        | 95   | TRACTOR, JOHN DEERE W/EXT. FLAIL MOWER   | 157-1709-23666                          | 0      | DIESEL            | 45.458.25              | 08/16/95 |
| 94842          | 110        | 96   | MORBARK TRAILER MOUNTED BRUSH CHIPPER    | 2771                                    | õ      | DIESEL            | 24.656.33              | 12/20/96 |
| 94842          | 111        | 01   | KUBOTA TRACTOR MOWER W/FLAIL MOWER       | 10775                                   | ő      | DIESEL            | 74 873 29              | 11/01/01 |
| 94852          | 106        | 90   | LOADER. BACKHOE JOHN DEERE W/BKT         | T0310CF768260                           | ő      | DIESEL            | 36 180 00              | 01/01/90 |
| 94852          | 107        | 90   | ROLLER, TANDEM CAT                       | 061-200285                              | 0      | DIFERT.           | 21 012 01              | 05/01/90 |
| 94852          | 108        | 93   | LOADER, KOMATSU FRONT END                | 12944                                   | ő      | DIRSEL            | 70 065 85              | 02/10/93 |
| 94852          | 109        | 94   | GRADER, CHAMPION 710A                    | 157-1709-23666                          | ő      | DIRSEL            | 93 941 97              | 04/05/94 |
| 94852          | 110        | 92   | SULLAIR AIR COMPRESSOR                   | 004-137714                              | ő      | DIESEL            | 14 104 09              | 05/01/02 |
| 94852          | 111        | 88   | FORKLIFT CAT VS0D                        | 3EC03766                                | 0      | DIESEL            | 4 592 20               | 09/12/02 |
| 94852          | 112        | 06   | GMC FORWARD CAB W/SWERPER                | 1GDM7E1306E431691                       | 33 000 | DIESEL            | 1,303.30<br>220 350 DE | 05/12/00 |
| 94852          | 113        | 07   | NH FRT LOADER/BACKHOE W/REAR BUCKET      | 031065320                               | 55,000 | DIBOBL<br>DIPONT. | 20,335,50              |          |
| 94852          | 105        | 8 A  | FLOODLIGHT WINCO MOUNT-ON TRATIER        | 44160709                                | 0      | DIRGEN            | 70,720.00              | 07/00/00 |
| 95812          | 180        | 94   | TRUCE OFFICE ITOM                        | 100000                                  | 0      | DIRGEN            | 208.33                 | 07/09/88 |
| 95812          | 185        | 07   | CUEV VAN                                 | 1/3DDC340325223142                      | 0      | DIBSEL            | 34,994.00              | 03/31/94 |
| 95812          | 187        | 07   | CHEV CREWCAR D/HD 3 TOM N/HMI DODY       | 100000000000000000000000000000000000000 | 0      | DIRGEN            | 24,480.78              | 06/18/9/ |
| 05012          | 180        | 50   | CHEV CREMCAS FYOF I TON WYOFE BODI       | IGBHC33F6VF02/336                       | U      | DIESEL            | 28,988.36              | 06/18/97 |
| 95812          | 190        | 60   | CHEV I TON CREMCAD FICK-UP INUCK         | 1000033FAWF081269                       | 0      | DIESEL            | 29,191.50              | 08/24/9/ |
| 95812          | 105        | 00   | CHEVI ICA CREMCAB FICK-OF IROCK          | 1GCGC33F2WF062545                       | 0      | DIESEL            | 29,191.50              | 08/24/97 |
| 05910          | 106        | 22   | CHEVROLEI VAN WYBUCKEI HIGHHIFI          | 100H039F3X1038172                       | 0      | DIESEL            | 51,462,00              | 01/27/99 |
| 05910          | 204        | . 00 | CHEV I TOW FLATBED /HIDRAUDIC DIFTGATE   | IGBHC34F2XF008932                       | 0      | DIESEL            | 31,769.59              | 01/26/99 |
| 00012          | 204        | 22   | CHEV 444 PICKUP TRUCK                    | IGCEK14V6X2158439                       | 0      | DIESEL            | 23,973.80              | 06/22/99 |
| 05010          | 200        | 22   | GUE IROUR W/OILLITI BODI & CRANE         | IGDHKJ4F7XF082678                       | 0      | DIESEL            | 49,346.96              | 02/07/00 |
| 05012          | 210        | 00   | CHEV FLATBED I TON TRUCK                 | IGBHCJ4F9YF509589                       | 0      | DIESEL            | 33,853.95              | 10/23/00 |
| 22012          | 212        | · 04 | FORD F-350 UTILITY BOX W/RACK TRUCK      | 1FDSF30F82EC92916                       | 0      | DIESEL            | 34,644.66              | 02/28/03 |
| 05010          | 213        | 05   | FORD BACONSION SUV 444                   | 1FMSU41P55EA25207                       | Ů      | DIESEL            | 40,944.37              |          |
| 05012          | 210        | 00   | FORD F350 CREWCAB FASETSIDE P-UP TRUCK   | 1FTWW30P56ED69925                       | 0      | DIESEL            | 37,455.00              |          |
| 2201Z          | 213        | 00   | FORD F350 CREWCAB FLEETSIDE P-OP TRUCK   | TELMM30D00ED69928                       | 0      | DIESEL            | 37,455.00              |          |
| 22017          | 243        | 08   | FORD F-350 FLEETSIDE PICK-UP             | 1FTWW30R981C60405                       | 10,800 | DIESEL            | 42,466.95              |          |
| 22044          | 143        | 64   | TRUCK, FORD AERIAL PLATFORM              | 1FDXK74N0EVA05017                       | D      | DIESEL            | 72,845.71              | 05/22/84 |
| 95822          | 133        | 93   | TRUCK, INT L 4700 STAKE DUMP             | 1HTSCPHL5PHA70644                       | D      | DIESEL            | 42,318,47              | 09/17/92 |
| 22822          | 130        | 93   | TRUCK, INT DUMP 7CY                      | 1HTSDPCR6PH469513                       | 0      | DIESEL            | 46,157.69              | 11/24/92 |
| 95822          | 137        | 93   | TRUCK, INT DUMP /CY                      | 1HTSDPCR8PH469514                       | 0      | DIESEL            | 46,157.69              | 11/24/92 |
| 22822          | 132        | 94   | TRUCK, CHEVROLET 7CY DUMP                | 1GB97H1J1RJ103701                       | 0      | DIESEL            | 45,203.27              | 03/25/94 |
| 95822          | 141<br>140 | 94   | TRUCK, INT'L CREWCAB FLATBED             | 1HTSCACL2RH571311                       | 0      | DIESEL            | 46,504.96              | 05/11/94 |
| 95822<br>00005 | 142        | 94   | TRUCK, INT'L CREWCAB FLATBED             | 1HTSCACL4RH571312                       | 0      | DIESEL            | 46,504.96              | 05/11/94 |
| 95822          | 143        | 95   | TANKER, GMC 2,000 GAL WT                 | 1GDP7H1J8RJ512351                       | 0      | DIESEL            | 65,910.40              | 01/12/95 |
| 95822          | 144        | 95   | TANKER, GMC 2,000 GAL WT                 | lGDP7H1J5RJ512338                       | 0      | DIESEL            | 65,910.40              | 01/12/95 |
| 95822          | 148        | 97   | INTERNATIONAL 2 1/2 CY DUMP TRUCK        | 1HTSCABL3VH453067                       | 0      | DIESEL            | 46,598.86              | 03/24/97 |

.

|        |     |          |                                           |                    |         |                  | ACOUIS                 | TION     |
|--------|-----|----------|-------------------------------------------|--------------------|---------|------------------|------------------------|----------|
| EÕAIBW | ENT | DE       | SCRIPTION                                 | SERIAL NUMBER      | GVW     | FUEL             | COST                   | DATE     |
| 95822  | 149 | 98       | INTIL CRENCAB W/STAKE BODY AND DUMP       | KTSCANL7WHA96619   | 0       | DIROPI.          | 66 760 0 <b>7</b>      | 10/12/07 |
| 95822  | 150 | 98       | INTERNATIONAL 7CY DIMP TRUCK              | 1HTSDADROVH496619  | , v     | DIRGEL           | 65 674 04              | 10/17/97 |
| 95822  | 151 | 98       | INTERNATIONAL 7CY DUMP TRUCK              | 1HTSDADR6XH648999  | Ň       | DIBOMI<br>DIRGEL | 55 740 77              | 11/24/09 |
| 95822  | 152 | 98       | INTERNATIONAL 2 1/2 CY DUMP TRUCK         | INTSCABLEXHEA9040  | ů       | DIESEI.          | 51 106 70              | 11/24/98 |
| 95822  | 153 | 99       | INTERNATIONAL 2 1/2 CY DUMP TRUCK         | 1HTSCAAN3XH212101  | ő       | DIESEL           | 61.829.30              | 09/25/99 |
| 95822  | 154 | 99       | INTERNATIONAL 2.000 GALS WATER TANK TRX   | 1HTSDADR8YH212155  | Ň       | DIESEL           | 109 561 57             | 10/01/00 |
| 95822  | 155 | 99       | INT TRUCK W/BOOM CRANE                    | HTGEATR2XH212154   | ů<br>N  | DIESEL           | 108 308 67             | 10/01/00 |
| 95822  | 156 | 00       | GMC W/DUMP CHIP BODY                      | 1002781067.1519587 | ň       | DIESEL           | 144 454 49             | 02/21/01 |
| 95822  | 157 | 94       | TRUCK, INT'L 4700 2 1/2 CY DUMP           | 1HTSCABLXSH571306  | 0       | DIESEL           | 35 600 7/              | 05/21/01 |
| 95822  | 158 | 03       | PETERBILT TRUCK W/ASPEN AERIAL BODY       | 1NPZX0TX530714739  | 0       | DIESEL           | 607 831 53             | 12/16/02 |
| 95822  | 159 | 02       | CHEVROLET HD FLATBED W/TAILGATE           | 3GBKC34F52M116623  | 15 000  | DIESEL           | 38 060 00              | 04/21/02 |
| 95822  | 160 | 02       | CHEVROLET HD FLATBED W/TAILGATE           | 3G8KC34F52M116749  | 15,000  | DIRSRI.          | 38 860 00              | 04/21/03 |
| 95822  | 161 | 91       | MACK DUMP TRUCK 10 C. YD.                 | 1M2AY80C5MM005596  | 56.540  | DIESEL           | 69 349 13              | 01/07/91 |
| 95822  | 162 | 91       | MACK DUMP TRUCK 10 C. YD.                 | 1M2AY80C7MM005597  | 00,010  | DIESEL           | 69 348 14              | 01/07/91 |
| 95822  | 163 | 04       | PETERBUILT 7CY YD DUMP BODY TRUCK         | 2NPNHZAXX4MA16624  | ő       | DIESEL.          | 99 432 24              | 01/16/04 |
| 95822  | 164 | 96       | TRUCK GMC FB (TOW TRUCK)                  | 1GDM7H1J8RJ502423  | 32.000  | DIESEL           | 80,861,00              | 01/07/96 |
| 95822  | 165 | 06       | PETERBUILT MASTER TRUCK TRACTOR           | 1XPFD40X67D673735  | 60.320  | DIESEL           | 136 681 05             | 01/07/90 |
| 95822  | 166 | 08       | GMC TRUCK W/AERIAL AND UTILITY BODY       | 1GDE5C1988F400866  | 00,000  | DIESEL           | 144 503 64             |          |
| 95842  | 145 | 95       | WELDER, MILLER ON TRAILER                 | KE700622           | Ď       | DIESEL           | 9 513 26               | 49/19/94 |
| 95842  | 147 | 95       | TRACTOR, JD W/FLAIL MOWER                 | LV5300D331852      | ů       | DIESEL           | 33,905,23              | 03/17/95 |
| 95842  | 148 | 97       | MORBARK CHIPPER                           | 2770               | Ő       | DIESEL           | 24 656 33              | 12/20/97 |
| 95842  | 149 | 97       | MORBARK CHIPPERS                          | 2772               | n       | DIRSEL           | 24,050,55              | 12/20/97 |
| 95842  | 154 | 98       | KUBOTA TRACTOR W/REAR FLAIL MOWER         | 30371              | ů       | DIRGRI.          | 78 056 41              | 00/06/00 |
| 95842  | 160 | 99       | KUBOTA TRACTOR MOWER W/CAB                | 10564              | ů       | DIESEL           | 35 029 10              | 13/30/99 |
| 95842  | 161 | 99       | KUBOTA TRACTOR MOWER W/CAB                | 10562              | ů<br>N  | DIESEL           | 60 899 68              | 01/30/99 |
| 95842  | 162 | 00       | KUBOTA TRACTOR W/BOMFORD FLAIMMOWER       | 10712              | Ň       | DIESEL           | 65 204 45              | 01/30/00 |
| 95842  | 163 | 01       | KUBOTA TRACTOR W/FLAIL MOWER              | 10776              | Ň       | DIESEL           | A1 416 79              | 10/31/01 |
| 95842  | 164 | 01       | KUBOTA TRACTOR W/FLAIL MOWER              | 10777              | · ň     | DIESEL           | A1 A16 78              | 10/31/01 |
| 95842  | 165 | 01       | CASE TRACTOR MOWER/SICKLE BAR             | 3.181.01.8544      | ٥.<br>٥ | DIESEL           | 41,410.70<br>61 978 11 | 10/02/01 |
| 95842  | 168 | 02       | CASE TRACTOR, SIDE MT. REAR FLAIL MOWER   | JJE1020834         | ۵.      | DIESEL           | 68 967 89              | 11/22/01 |
| 95842  | 169 | 02       | CASE TRACTOR, SIDE MT, REAR FLAIL MOWER   | JJE1020914         | Ň       | DTESEL           | 60 957 89              | 11/22/02 |
| 95842  | 170 | 02       | CASE TRACTOR W/FRONT SWEEPER              | JUE1020832         | ٥<br>٨  | DIESEL           | 34 114 27              | 11/22/02 |
| 95842  | 175 | 03       | ALLMAND NITE-LITE PRO                     | 1315 PRO 03        | ň       | DIVER.           | 7 960 16               | 11/06/02 |
| 95842  | 176 | 03       | KUBOTA TRACTOR MOWER W/REAR FLAIL INTT    | 11076              | Ň       | DIRSEL           | 26 122 00              | 11/03/03 |
| 95842  | 177 | 03       | KUBOTA TRACTOR MOWER W/REAR FLATI, INIT   | 31078              | 0       | DIRSEL           | 27 622 10              | 01/13/04 |
| 95842  | 180 | 06       | FORD NEW HOLLAND TRACTOR MOWER            | HJS062649          | 0       | DIESEL           | 57,033.10<br>68 749 55 | 01/13/04 |
| 95842  | 181 | 06       | CASE TRACTOR MOWER W/CAB                  | HE1038649          | ň       | DIFEFT.          | AA 270 55              |          |
| 95852  | 112 | 81       | GRADER. GALION MOTOR A-500 ARTICULATING   | GE09544            | · 0     | DIESSD<br>DIESSD | 44,270.35<br>BO 477 DD | 00/26/00 |
| 95852  | 121 | 90       | LOADER/BACKHOE 310C JD W/BKT              | T0310CF768297      | . 0     | DIBBEL           | 36 186 60              | 00/20/00 |
| 95852  | 122 | 90       | COMPRESSOR, SHULAIR PORTABLE AIR          | 004104924          | d<br>d  | DIBSED           | 11 016 61              | 01/0//30 |
| 95852  | 124 | 93       | LOADER, KOMATSII FRONT END                | 12942              | a<br>a  | DINGEN<br>DIRGEN | 11,030.01              | 07/00/30 |
| 95852  | 125 | 93       | LOADER KOMATSII FRONT END                 | 10042.             | 0       | DIBOBU           | 70,005.85              | 02/10/93 |
| 95852  | 126 | 93       | GRADER, CHANDION MOTOR 710A               | 167164673437       | v<br>0  | DIEGEL           | 70,065.85              | 02/10/93 |
| 95852  | 127 | 93       | GRADER CHAMPION 7103 MOTOR                | 1201242233424      | 0       | DIRORI           | 96,243.02              | 01/07/94 |
| 95852  | 128 | 94       | GPADER, CHAMDION 710A MOTOR               | 367171032623       | U<br>C  | DIRORI           | 20,443.04              | 01/07/94 |
| 95852  | 129 | 97       | FORD/FLOIN SWREDED A MULTER               | 10000010100007     | U<br>A  | DIEGEN           | 75,4/8.42              | 04/05/94 |
| 95852  | 130 | 47<br>47 | CASE LOADED / BACKHOF SHD M / BY WOMDANNO | TEDVIGTOTAN ATAD81 | 0       | DIRGEL           | 145,546.69             | TO/TT/20 |
| 95852  | 131 | 40       | LODDED ERONT END KONNTCH                  | 200257             | U       | DIROT            | 76,434.93              | 04/21/98 |
| 95852  | 132 | 00       | NEW HOLSAND BACKHOP/LOADED W/BAMARD       | 2100237            | U<br>C  | DIDODI           | 91,780.41              | 09/29/98 |
| 95852  | 133 | 00<br>00 | AND THICK SCHWADZE STOPPET SUCEPED        | 10009010103613643  | U<br>C  | DIFER            | 77,842.07              | 01/16/01 |
| 95852  | 134 | 02       | KOMATCH FORTIER                           | 1002/010120313843  | U<br>C  | D15350<br>D19357 | 173,680.16             | 12/10/02 |
| 2002   | 734 | 0.3      | NORMIDO EVRNDIEI                          | 394437A            | U       | DIESEL           | 21,145.70              | 11/19/03 |

----ACQUISITION-----

HIGHWAYS - MAUI DISTRICT OFFICE E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

ς. 5

PERIOD: 07/01/07 THRU 06/30/08

#### -v. .....

HIGHWAYS - MAUI DISTRICT OFFICE E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

PERIOD: 07/01/07 THRU 06/30/08

|                |            |    |                                         |                   |        |                | ACQUISI           | (TION        |
|----------------|------------|----|-----------------------------------------|-------------------|--------|----------------|-------------------|--------------|
| EQUIPM         | ENT        | DE | SCRIPTION                               | SERIAL NUMBER     | GV₩    | FUEL           | COST              | DATE         |
| 05050          | 3.90       |    |                                         |                   |        |                |                   |              |
| 22624          | 135<br>176 | 04 | CASE WREEL LOADER                       | JER0135991        | 0      | DIESEL         | 86,874.44         | 07/13/04     |
| 22824<br>85854 | 136        | 04 | CASE ROLLER DV202                       | 000000234         | 0      | DIESEL         | 34,525.82         | 07/13/04     |
| 95054          | 137        | 00 | GMC FORWARD CAS W/SWEEPER               | 1GDM7F1336F432110 | 33,000 | DIESEL         | 219,109.95        |              |
| 92824          | 138        | 06 | PETERBUILT CAE CHASSIS W/VACUUM         | INPAL00X17D673738 | 66,000 | DIESEL         | 326,148.08        |              |
| 72022          | T#0        | 07 | NH FRT LOADER/BACKHOE W/REAR BUCKET     | 031065319         | 0      | DIESEL         | 70,720.00         | -            |
| •              |            |    |                                         |                   |        |                | FUEL TYPE TOTA    | <u>.</u>     |
| 95812          | 225        | 08 | FORD F250 PICKUP K/CAB                  | 1FTNX20548EC60408 | 0      | PROPANE/GAS    | 42.978.92         |              |
|                |            |    | , - ··                                  |                   | •      | , ••••-        | FUEL TYPE TOTA    | λ <b>Τ</b> ι |
|                |            |    |                                         |                   |        |                |                   |              |
| 95842          | 152        | 96 | VACCUM NILFISK GS/83                    | 2100W             | 0      | ELECTRIC       | 4,923.00          | 11/08/96     |
| 95842          | 155        | 98 | AMERICAN ELECTRIC SIGN WITH TRAILER     | 1A9MS1517TA378127 | 0      | ELECTRIC       | 32,925.89         | 09/04/98     |
| 95842          | 156        | 98 | AMERICAN ELECTRIC SIGN WITH TRAILER     | 1A9MS1519TA378128 | 0      | ELECTRIC       | 32,925.89         | 09/04/98     |
| 95842          | 1.58       | 99 | ALLMAND ECLIPSE ARROW BOARDS            | 99078407          | 0      | ELECTRIC       | 6,483.21          | 08/27/99     |
| 95842          | 159        | 99 | ALLMAND ECLIPSE ARROW BOARDS            | 9907B408          | 0      | ELECTRIC       | 6,483.21          | 08/27/99     |
| 95842          | 166        | 02 | SPEED CONTROL MONITOR W/TRAILER         | 40XK111S72A020005 | 2,000  | ELECTRIC       | 11,999.00         | 06/19/02     |
| 95842          | 167        | 02 | SPEED CONTROL MONITOR W/TRAILER         | 40XK111S92A020006 | 2,000  | ELECTRIC       | 11,999.00         | 06/19/02     |
| 95842          | 171        | 02 | ADDCO MID-SIZE MESSAGE BOARD-TRLR MTD   | 520280602         | 0      | ELECTRIC       | 16,100.00         | 01/08/03     |
| 95842          | 172        | 02 | ADDCO MID-SIZE MESSAGE BOARD-TRLR MTD   | 520270602         | 0      | ELECTRIC       | 16,100.00         | 01/24/03     |
| 95842          | 173        | 02 | ADDCO FULL SIZE MESSAGE BOARD- TRLR MTD | 537603            | 0      | ELECTRIC       | 25,300.00         | 01/24/03     |
| 95842          | 174        | 02 | ADDCO FULL SIZE MESSAGE BOARD-TRLR MTD  | 537604            | 0      | ELECTRIC       | 25,300.00         | 01/24/03     |
| 95842          | 178        | 96 | ADDCO FULL SIZE MESSAGE BOARD           | DH1000SN584985    | 3,700  | ELECTRIC       | 37,000.00         |              |
| 95842          | 179        | 98 | AMERICAN SIGN SRS MESSAGE BOARD         | 1A9MS1515TA378126 | 2,950  | ELECTRIC       | 32,920.00         |              |
|                |            |    |                                         |                   |        |                | FUEL TYPE TOTA    | L            |
|                |            |    |                                         |                   |        |                |                   |              |
| 91832          | 127        | 00 | ZIEMAN TRAILER (BORROW'G FROM HNL)      | 1ZC729B25PZP17467 | 0      | NOT APPLICABLE | .00               |              |
| 94832          | 104        | 90 | TRAILER, ZIEMAN TILT BED                | 1ZCT18E19LZP15973 | 0      | NOT APPLICABLE | 6,765.84          | 07/23/90     |
| 94832          | 105        | 93 | TRAILER, TRAIL KING TILT                | 1TKC02422NM071620 | 0      | NOT APPLICABLE | 16,256.30         | 12/29/92     |
| 94832          | 106        | 06 | TRAILER, LANDSCAPE UTILITY (MOLOKAI)    |                   | 880    | NOT APPLICABLE | 3,541.68          |              |
| 95832          | 109        | 96 | TRAILER SCALE                           | 1S9EC1615TH364446 | 0      | NOT APPLICABLE | 17,014.47         | 09/03/97     |
| 95832          | 110        | 99 | TRAILER CHILTON                         | 1FDAC0819XC000230 | 0      | NOT APPLICABLE | 13,667.00         | 12/17/99     |
| 95832          | 112        | 03 | ZIEMAN FLATBED TILT TRAILOR             | 1ZCE18S203ZP24731 | 0      | NOT APPLICABLE | 7,291.62          | 11/05/03     |
| 95832          | 113 .      | 04 | ZIEMAN TILT TRAILER                     | 1ZCT20B213ZP24741 | 0      | NOT APPLICABLE | 6,817.67          | 07/13/04     |
| 95832          | 115        | 07 | ZIEMAN FLATBED TILT TRAILER (BACON)     | 1ZCT21E2X7ZP27665 | 2,940  | NOT APPLICABLE | 11,856.00         |              |
| 95842          | 184        | 08 | SILENT MESSENGER BOARD                  | MB32248           | 0      | NOT APPLICABLE | 25,535.00         |              |
|                |            |    |                                         |                   |        |                | ערעיי עסעיי זעווע | νт.          |

FUEL TYPE TOTAL

.

DESCRIPTION...... SERIAL NUMBER.....

HIGHWAYS - HAWAII DISTRICT OFFICE E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

PERIOD: 07/01/07 THRU 06/30/08

Ľ, -7

EQUIPMENT

| 91812 | 384        | 89 VAN GMC RALLYSTX                         | 1GKDG15H3K7515445 | 0   |                      | .00             |
|-------|------------|---------------------------------------------|-------------------|-----|----------------------|-----------------|
| 91812 | 426        | 91 VAN CHEV ASTRO                           | 1GNDM19Z6MB212142 | 0   |                      | .00             |
| 91812 | 435        | 92 TRUCK: CHEV SUBURBAN 4 WD W/AIR          | 1GNGK26KXNJ334168 | 0   |                      | 21.875.07       |
| 91812 | 512        | 94 VAN GMC SAFARI                           | 1GKDM15Z1RB542846 | 0   |                      | 15.072.96       |
| 91812 | 649        | 05 FORD VAN                                 | 1FMNE31P65HA02084 | 0   |                      | .00             |
|       |            |                                             |                   | -   |                      | FUEL TYPE TOTAL |
|       |            |                                             |                   |     |                      |                 |
| 96812 | 174        | 86 TRUCK CHEV 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 175        | 86 TRUCK CHEV 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 176        | 86 SEDAN CHEV CELEBRITY                     |                   | 0   | GASOLINE             | .00             |
| 96812 | 177        | 86 TRUCK FORD 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 178        | 66 TRUCK FORD 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 179        | 86 TRUCK FORD 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 180        | 87 TRUCK CHEV 1/2 TON PICKUP                |                   | 0   | GASOLINE             | .00             |
| 96812 | 181        | 87 TRUCK CHEV 1/2 TON PICKUP                |                   | ō   | GASOLINE             | .00             |
| 96812 | 182        | 87 TRUCK FORD 1/2 TON PICKUP F150           |                   | 0   | GASOLINE             | .00             |
| 96812 | 183        | 87 TRUCK FORD PU F150                       | 1FTDF15Y7HPA84B43 | 0   | GASOLINE             | 10.617.67       |
| 96812 | 184        | 88 SEDAN FORD TAURUS 4 DOOR                 |                   | 0   | GASOLINE             | .00             |
| 96812 | 185        | 88 TRUCK CUSHMAN UTILITY                    |                   | 0   | GASOLINE             | . 00            |
| 96812 | 186        | 86 TRUCK CHEV CREW CAB PICKUP               |                   | 0   | GASOLINE             | -00             |
| 96812 | 187        | 88 TRUCK CHEV CREW CAB PICKUP               |                   | 0   | GASOLINE             | .00             |
| 96812 | 189        | 88 TRUCK CHEV CREW CAB PICKUP               |                   | ő   | GASOLINE             | 00              |
| 96812 | 1.90       | 88 TRICK CHEV CREW CAB PICKUP               |                   | 0   | GASOLINE             | 00              |
| 96812 | 191        | 88 TRUCK CHEV CREW CAB PICKUP               |                   | 0   | GISOLINE             | 00              |
| 96812 | 192        | 89 TRUCK CHEV PICKUP                        |                   | 0   | CASOLINE             | .00             |
| 96812 | 193        | 89 WAGON CHEV BLAZED S-10                   |                   | 0   | CASOLINE             | .00             |
| 96812 | 194        | 89 WAGON CHEV BLAZER S-10                   |                   | 0   | GASOLINE             | .00             |
| 96812 | 195        | 89 TRICK CHEV BLADER B-10                   |                   | 0   | CABOLINE<br>CABOLINE | .00             |
| 96812 | 196        | 89 TRUCK CHEV CREW CAR DICKID               |                   | 0   | CASOLINE             | .00             |
| 96812 | 197        | 89 TRUCK CHEV CREW CAR                      |                   | 0   | GROOLING             | .00             |
| 96812 | 201        | 90 WACON CHEV BLACER                        |                   | 0   | GAGOLINS             | .00             |
| 96812 | 203        | 91 TRUCK CUEV BLAZER                        |                   | 0   | GASOLINE             | .00             |
| 04012 | 203        | DI WENCE CHEV PICKOF                        |                   | 0   | GASOLINE             | .00             |
| 06010 | 204        | DO TRUCK CHEMAN INTITUY                     | •                 | Ű   | GASOLINE             | .00             |
| 00012 | 200        | A1 WENGE ROOD DIGWID                        |                   | . 0 | GASOLINE             | .00             |
| 00012 | 200        | AL HENCE FORD FICKOP                        |                   | Ų   | GASOLINE             | .00             |
| 20012 | 209        | 91 IROCK FORD PICKOP                        |                   | 0   | GASOLINE             | .00             |
| 90012 | 210        | 91 TRUCK FORD PICKUP                        |                   | U   | GASOLINS             | .00             |
| 21000 | 211        | AT TRUCK FORD PICKUP                        |                   | U   | GASOLINE             | .00             |
| 20012 | 414        | A TRUCK FORD PICKUP                         |                   | 0   | GASOLINE             | .00             |
| 90012 | 213        | 21 IROCK FORD PICKOP                        |                   | U   | GASOLINE             | 00              |
| 20812 | 214<br>217 | 91 WAGON CHEV BLAZER                        |                   | 0   | GASOLINE             | .00             |
| 96913 | 410        | 92 SEDAN FORD TAURUS 4 DOOR                 | •                 | U   | GASOLINE             | .00             |
| 96812 | 218        | 92 TRUCK FORD RANGER PICKUP                 |                   | 0   | GASOLINE             | .00             |
| 96812 | 219        | 52 WAGON CHEV BLAZEX S-10                   |                   | 0   | GASOLINE             | .00             |
| 96812 | 227        | 93 TRUCK CUSRMAN OTILITY 3-WHEEL            |                   | 0   | GASOLINE             | .00             |
| 96813 | 228        | 93 TRUCK CUSHMAN UTILITY 3-WHEEL            |                   | 0   | GASOLINE             | .00             |
| 96812 | 229        | 94 SEDAN PONITAC GRAND PRIX                 |                   | 0   | GASOLINE             | .00             |
| 96812 | 232        | 34 WAGON CHEV STATION SURBURBAN 3/4 TON 4X4 |                   | 0   | GASOLINE             | .00             |
| 96812 | 233        | 95 TRUCK FORD PICKUP F150                   | 2FTEF25N9SCA29958 | 0   | GASOLINE             | .00             |
| 96812 | 234        | 95 TRUCK FORD PICKUP F150                   | 2FTEF15N0SCA29959 | 0   | GASOLINE             | 00              |
| 96812 | 235        | 95 TRUCK FORD PICKUP F150                   | 2FTEF15N7SCA29960 | 0   | GASOLINE             | .00             |
|       |            |                                             |                   |     |                      |                 |
|       |            |                                             |                   |     |                      |                 |
|       |            |                                             |                   |     |                      |                 |
|       |            |                                             |                   |     |                      |                 |

A-39

----ACQUISITION-----

DATE

COST

GVW FUEL....

| EQUIP | 1ENT  | DESCRIPTION                                 | SERIAL NUMBER     | . GVW  | FUEL     | COST      | DA |
|-------|-------|---------------------------------------------|-------------------|--------|----------|-----------|----|
| 96812 | 236   | 95 TRUCK FORD PICKUP F150                   | 2FTEF15N9SCA29961 | . 0    | GASOLINE | .00       |    |
| 96812 | 237   | 95 TRUCK FORD PICKUP F150                   | 2FTEF15N0SCA29962 | 0      | GASOLINE | .00       |    |
| 96812 | 238   | 95 WAGON JEEP SPORT UTILITY                 | 1J4FT27S9SL642619 | 0      | GASOLINE | 17,581.31 |    |
| 96812 | 239   | 95 WAGON JEEP SPORT UTILITY                 | 1J4FT27S5SL642620 | 0      | GASOLINE | 17,281.30 |    |
| 96812 | 240   | 95 TRUCK CHEV PICKUP 3/4 T                  | 1GCFC24H8SZ199570 | 0      | GASOLINE | 21,968.41 |    |
| 96812 | 241   | 95 TRUCK CHEV 3/4 T PICKUP                  | 1GCFC24H3SZ199573 | 0      | GASOLINE | 21.968.41 |    |
| 96812 | 242   | 91 VAN CHEV (FROM MVSO-OAHU 9181410)        | 1G8EG25N3F7167870 | 0      | GASOLINE | .00       |    |
| 96812 | 243   | 97 SEDAN CHEV CAVALIER                      | 3G1JC5248VS850735 | 0      | GASOLINE | .00       |    |
| 96812 | 255   | 93 TRUCK FORD F350 PU CREW CAB              | 2FTJW36H5PCB01555 | 0      | GASOLINE | 12,725.35 |    |
| 96812 | 256 . | 93 TRUCK FORD PU CREW CAB                   | 2FTJW36H9PCB01557 | 0      | GASOLINE | 12.725.36 |    |
| 96812 | 257   | 98 TRUCK CHEV PICKUPS10 4X2 EXTENDED CAB    | 1GCCS19X7WK242357 | 0      | GASOLINE | 18,108,22 |    |
| 96812 | 258   | 98 TRUCK CHEV PICKUP S10 4X2 EXTENDED CAB   | 1GCCS19X8WK241430 | ō      | GASOLINE | 18.108.22 |    |
| 96812 | 259   | 98 TRUCK CHEV PICKUP S10 4X2 EXTENDED CAB   | 1GCCS19XXWK241364 | 0      | GASOLINE | 18.108.21 |    |
| 96812 | 260   | 98 TRUCK CHEV PICKUP S10 4X2 EXTENDED CAB   | 1GCCS19X4WK242171 | 0      | GASOLINE | 18.108.21 |    |
| 96812 | 261   | 99 TRUCK CHEV 1/2 T PICKUP                  | 1GCEC14VXXZ100931 | 0      | GASOLINE | .00       |    |
| 96812 | 262   | 99 TRUCK CHEV 1/2 T PICKUP                  | 1GCEC14V9XZ100130 | 0      | GASOLINE | .00       |    |
| 96812 | 263   | 99 TRUCK CHEV 1/2 T PICKUP                  | 1GCEC14V4XZ100181 | ò      | GASOLINE | .00       |    |
| 96812 | 264   | 99 TRUCK CHEV 1/2 T PICKUP                  | 1GCEC14V4XZ100505 | 0      | GASOLINE | .00       |    |
| 96812 | 267   | 99 WAGON SPORTS UTILITY JEE CHEROKEE        | 1J4FT28X2XL578123 | 0      | GASOLINE | 23.740.48 |    |
| 96812 | 268   | 99 TRUCK CHEV PU EXT CAB S-10               | 1GCCS19X7X8174706 | 0      | GASOLINE | .00       |    |
| 96812 | 269   | 99 TRUCK CHEV PU EXT CAB S-10               | 1GCDT19X5X8175600 | Ó      | GASOLINE | .00       |    |
| 96812 | 270   | 00 TRUCK PICKUP GMC EXT CAB 4 X4            | 1GTDT19W4Y8267130 | 0      | GASOLINE | .00       |    |
| 96812 | 271   | 00 TRUCK PICKUP GMC FULL SIZE 2 X 4 1/2 TON | 1GTEC14V2YZ323322 | 0      | GASOLINE | .00       |    |
| 96812 | 272 · | 00 TRUCK PICKUP SILVERADO 1500              | 1GCEV14V7YZ293539 | ō      | GASOLINE | .00       |    |
| 96812 | 274   | 01 TRUCKSTER CUSHMAN HAULSTER               | 1CHMH327XYL003003 | 0      | GASOLINE | 25,266,50 |    |
| 96812 | 275   | 01 SEDAN FORD FOCUS 4 DR.                   | 1FAFP33P11W270665 | 0      | GASOLINE | .00       |    |
| 96812 | 276   | 01 CUSHMAN 3 WHEEL TRUCKSTER                | LM2056            | 0      | GASOLINE | .00       |    |
| 96812 | 277   | 01 CUSHMAN 3 WHEEL TRUCKSTER                | LM2057            | 0      | GASOLINE | .00       |    |
| 96812 | 278   | 01 CUSHMAN 3 WHEEL TRUCKSTER                | LM2058            | o      | GASOLINE | .00       |    |
| 96812 | 279   | 01 TRUCK CHEV PU EXT CAB                    | 1GCCS19W018212629 | 0      | GASOLINE | 20,679,17 |    |
| 96812 | 280   | 01 WAGON STATION CHEV BLAZER 4 X 4          | 1GNDT13W41K225114 | 0      | GASOLINE | 27,946.25 |    |
| 96812 | 281   | 01 WAGON STATION CHEV BLAZER 4 X 4          | 1GNDT13W61K228421 | 0      | GASOLINE | 24,946.25 |    |
| 96812 | 282   | 01 TRUCK FORD PICKUP RANGER                 | 1FTZR15E41PB43081 | 0      | GASOLINE | .00       |    |
| 96812 | 284   | 02 TRUCK PU FORD F-150XL SUPER CAB 4X2      | 1FTRX17W52NB19106 | 0      | GASOLINE | 23.684.70 |    |
| 96812 | 285   | 02 WAGON STATION FORD EXCURSION XLT 4 X 4   | 1FMSU41F92EC53990 | 0      | GASOLINE | 38,773.08 |    |
| 96812 | 286   | 02 TRUCK PICKUP FORD RANGER SCXL 4 X 4      | 1FTYR45E72PB00479 | 0      | GASOLINE | 21,159,55 |    |
| 96812 | 287   | 02 SEDAN CHEVROLET MALIBU 4 DR.             | 1G1ND52J12M723017 | 0      | GASOLINE | 16.784.17 |    |
| 96812 | 288   | 02 WAGON STATION CHEVROLET 4 X 4 BLAZER     | 1GNDT13W92K219411 | ō      | GASOLINE | 27,791,67 |    |
| 96812 | 289   | 02 TRUCK PICKUP CHEVROLET S-10 EXT CAB      | 1GCCS19W228229465 | 0      | GASOLINE | 18,744.68 |    |
| 96812 | 290   | 03 2003 TRUCKSTER CUSHMAN                   | LM20777           | o      | GASOLINE | 29.974.66 |    |
| 96812 | 291   | 03 2003 TRUCKSTER CUSHMAN                   | LM20776           | 0      | GASOLINE | 29,974,66 |    |
| 96812 | 292   | 03 FORD SEDAN 4-DOOR                        | 1FAFF52UB3G236528 | 3.300  | GASOLINE | .00       |    |
| 96812 | 294   | 05 PICKUP TRUCK FORD 150                    | 1FTRF12W95NA63038 | 4.750  | GASOLINE | 22.075.25 |    |
| 96812 | 295   | 05 PICK UP TRUCK FORD 150                   | 1FTRF12W75NA63040 | 4.750  | GASOLINE | 22.705.25 |    |
| 96812 | 296   | 05 PICK UP TRUCK FORD 150                   | 1FTRF12W05NA6309  | 4.750  | GASOLINE | 22.075.26 |    |
| 96812 | 299   | 05 DODGE DR1500 PICKUP                      | 1D7HA16N35J604299 | -,0    | GASOLINE | 25,129.00 |    |
| 96812 | 300   | 05 JEEP LIBERTY/SPORT                       | 1J4GK48K05W652122 | ů<br>0 | GASOLINE | 21,407,15 |    |
| 96812 | 301   | 05 JEEP LIBERTY/SPORT                       | 1J4GK48K25W652123 | Ő      | GASOLINE | 21,407,15 |    |
| 96812 | 302   | 05 DODGE DR1500 PICKUP                      | 1D7HA16NX5J604297 | ů<br>0 | GASOLINE | 25.129.01 |    |
| 96812 | 303   | 07 2007 FORD F150 PICKUP TRUCK              | 1FTRF12V57KD42207 | 0      | GASOLINE | 28.008.02 |    |
| 96812 | 304   | 07 2007 FORD F150 PICKUP TRUCK              | 1FTRF12V37KD42206 | · 0    | GASOLINE | 28 008 02 |    |
|       |       |                                             |                   | 5      |          | 20,000.04 |    |

----ACQUISITION-----

DATE

GVW FUEL.....

PERIOD: 07/01/07 THRU 06/30/08

E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

HIGHWAYS - HAWAII DISTRICT OFFICE

¥ .,

,

EQUIPMENT

Appendix 6. DOT - Highways Vehicles and Fuel Data

DESCRIPTION...... SERIAL NUMBER.....

## PERIOD: 07/01/07 THRU 06/30/08

1

,

|       |       |                                             |                   |         |            | ACQUISI         | CION |
|-------|-------|---------------------------------------------|-------------------|---------|------------|-----------------|------|
| EQUIP | MENT  | DESCRIPTION                                 | SERIAL NUMBER     | . GVW   | FUEL       | COST            | DATE |
| 96812 | 305   | 07 2007 FORD F150 PICKUP TRUCK              | 18788128178042205 | ٥       | GD SOLTNE  | 29 009 02       |      |
| 96812 | 306   | 07 2007 FORD F150 PICKUP TRUCK              | 1FTRT12V77KD42208 | 0       | GASOLINE   | 26,008.02       |      |
| 96822 | 134   | 80 TRUCK INTERNATIONAL FLATBED W/HYDR BOOM  |                   | 0       | GA SOL INF | 20,055.70       |      |
| 96822 | 141   | 83 TRUCK INTERNATIONAL DUMP 7 CY            |                   | ő       | GASOLINE   | .00             |      |
| 96822 | 142   | 83 TRUCK CHEV DUMP 2 1/2 CY                 |                   | · 0     | GASOLINE   | .00             |      |
| 96822 | 148   | 86 TRUCK FORD DUMP 2 1/2 CY                 |                   | õ       | GASOLINE   | 00              |      |
| 96822 | 149   | 86 TRUCK FORD STAKE                         |                   | 0       | GASOLINE   | 00              |      |
| 96822 | 151   | 87 TRUCK FORD STAKE W/CANOPY F600           |                   | ő       | GASOLINE   | .00             |      |
| 96822 | 152   | 87 TRUCK FORD STAKE W/LIFTGATE F700         |                   | ů.      | GASOLINE   | .00             |      |
| 96822 | 156   | 89 TRUCK FORD DUMP 2 1/2 CY                 |                   | ő       | GASOLINE   | .00             |      |
| 96822 | 157   | 89 TRUCK FORD DUMP 2 1/2 CY                 |                   | 0       | GASOLINE   | 00,             |      |
| 96822 | 158   | 89 TRUCK FORD DUMP 2 1/2 CY                 |                   | ů<br>D  | GASOLINE   | 00,             |      |
| 96822 | 171   | 93 TRUCK GMC STAKE BODY                     | 1GDJ6H1P7R3505971 | 312.000 | GASOLINE   | .00             |      |
| 96832 | 113   | 53 TRAILER UTILITY 1/2 TON                  |                   | 0       | GASOLINE   | .00             |      |
| 96832 | 114   | 80 TRAILER AIRCO 200 AMP WELDER             |                   | 0       | GASOLINE   | .00             |      |
| 96832 | 142   | 07 TRAILKING DETACHABLE GOOSENECK TRAILER   | 1TKJ0472X9M092704 | Ö       | GASOLINE   | 68.645.00       |      |
| 96842 | 101   | 45 GENERATOR ONAN 5KW W/FLD LIGHTS TLR MTD. |                   | Q       | GASOLINE   | .00             |      |
| 96842 | 102   | 59 GENERATOR ONAN 5KW TRAILER MTD.          | •                 | Ď       | GASOLINE   | .00             |      |
| 96842 | 103   | 75 GENERATOR KOHLER 3KW TRAILER MTD.        |                   | ő       | GASOLINE   | 00              |      |
| 96842 | 160   | 91 REMOVER MACHINE TRAFFIC PAVEMENT         | 1245              | õ       | GASOLINE   | 5 645 12        |      |
| 96842 | 166   | 92 MOWER CUB CADET LAWN                     |                   | 0       | GASOLINE   | 0,010,22        |      |
| 96842 | 183   | 98 TRACTOR LAWN NEW HOLLAND LS55YT          | T8E0109           | ő       | GASOLINE   | 4 904 14        |      |
| 96842 | 195   | 01 STRIPING MACHINE KELLY-CRESWELL B421     | 8257              | 0       | GASOLINE   | 31 040 32       |      |
| 96852 | 120   | 79 SWEEPER WAYNE POWERED                    |                   | ů       | GASOLINE   | A1,040.5A<br>00 |      |
| 96862 | 107   | 86 SPRAYER GE 200 HP 200 GALLON             | •                 | ő       | GASOLINE   | .00             |      |
| 96862 | 108   | 90 SPRAYER J. BEAN CHEMICAL 200 GALLON      |                   | 0       | GASOLINE   | .00<br>nû       |      |
| 96862 | 111   | 96 SPRAYER FMC TRAILER MOUNTED              | JB00403NA         | õ       | GASOLINE   | 11 173 64       |      |
| 96862 | 112   | 96 SPRAYER, JOHN BEAN W/SPECTRUM TRAILER    | JB1545N1          | õ       | GASOLINE   | 11 885 99       |      |
| 96862 | 113   | 96 SPRAYER JOHN BEAN W/SPECTRUM TRAILER     | JB01531NT         | 0       | GASOLINE   | 11 886 00       |      |
| 96862 | 114   | 98 SPRAYER SDI CHEMICAL 300 GAL TRAILER MTD | 51007             | ő       | GASOLINE   | 8 710 88        |      |
| 96862 | 115   | 98 SPRAYER SDI CHEMICAL 300 GAL TRAILER MTD | 51008             | 0 ·     | GASOLINE   | 8 710.88        |      |
| 96862 | 116   | 02 CONTROL SPEED TRAILER MOUNTED            | 40XK111S12A020002 | ő       | GASOLINE   | 11 999 00       | -    |
| 96862 | 117   | 02 CONTROL SPEED TRAILER MOUNTED            | 40XK111S42A020009 | 0       | GASOLINE   | 11 999 00       |      |
| 96862 | 118 ' | 03 SPRAYER JOHN BEAN                        | JX00159           | ŏ       | GASOLINE   | 11,000.00       |      |
| 96862 | 119   | 03 SPRAYER JOHN BEAN                        | JX00156           | ő       | GASOLINE   | .00             |      |
| 96862 | 123   | 05 EDCO TRAFFIC LINE REMOVER                | TLR-7-11H         | ő       | GASOLINE   | 17.849.89       |      |
| 96862 | 129   | 07 MCGREGOR 300 GAL, SPRAYER                | RS300734          | 0       | GASOLINE   | 27,042102       |      |
|       |       |                                             |                   | 0       | 0.0001110  | FUEL TYPE TOTAL |      |
| 91612 | 623   | 03 FORD UTILITY TRUCK                       | 43ED13426         | ٥       | DTESEL     | 0.0             |      |
| 96812 | 220   | 92 TRUCK FORD CREW CAB W/DUMP               |                   | 0       | DIESEL     | .00             |      |
| 96812 | 221   | 92 TRUCK FORD CREW CAB W/DUMP               |                   | ő       | DIESEL     | .00             |      |
| 96812 | 222   | 92 TRUCK FORD CREW CAB W/DIMP               |                   | 0       | DIEGEL     | .00             |      |
| 96812 | 223   | 92 TRUCK FORD CREW CAB W/DUMP               |                   | ů       | DIFERL     | .00             |      |
| 96812 | 224   | 92 TRUCK FORD CREW CAB W/DUM                |                   | л<br>Л  | DIESEL     |                 |      |
| 96812 | 225   | 93 TRUCK FORD PICKUP F-153                  |                   | J.      | DIRSEI.    |                 |      |
| 96812 | 230   | 93 TRUCK CHEV CREW CAB W/DUMP               |                   | ň       | DIESEL     | .00             |      |
| 96812 | 231   | 94 TRUCK FORD PICKUP F-350                  | -                 |         | DTESEL     | .00             |      |
| 96812 | 244   | 97 TRUCK CHEV CREW CAB/CHAS 1 TON           | 1GBHC33F3VE024894 | 0       | DIESEL     | .00             |      |
| 96812 | 245   | 97 TRUCK CHEV CREW CAB/CHAS 1 TON           | 1GBHC33FAVF025314 | o<br>o  | DTESEL     | 00              |      |
| 96812 | 246   | 97 TRUCK CHEV CREW CAB/CHAS 1 TON           | 1GBHC33F3VE025009 | 0       | DIESEI.    | .00             |      |
|       |       |                                             |                   | v.      |            | • • • •         |      |

| HIGH | IWAYS - HAW | AII DI | STRICT | off) | CE   |      |         |
|------|-------------|--------|--------|------|------|------|---------|
| E/U  | ALTERNATIV  | e fuel | REPORT | BY   | FUEL | TYPE | 9/10/08 |

|         |      |                                                |                      |        | ·       |           |      |
|---------|------|------------------------------------------------|----------------------|--------|---------|-----------|------|
| EQUIP   | MENT | DESCRIPTION SE                                 | SRIAL NUMBER         | GVW    | FUEL    | COST      | DATE |
| 96812   | 247  |                                                | THURSDER WRAACS AS   |        |         |           |      |
| 96812   | 248  | 97 TRUCK CHEV CREW CAR/CHAS 1 TON 16           | 55AC33F6VF025103     | U.     | DIESEL  | .00       |      |
| 96812   | 249  | 97 TRUCK CHEV CREW CAB/CHAS 1 TON 10           | DRC33FFVF045371      | U      | DIESEL  | .00       |      |
| 96812   | 250  | 97 TRUCK CHEV CREW CAB/CHES I TON IC           | ABHC33F8VFU24793     | U      | DIESEL  | .00       |      |
| 96812   | 251  | A7 TRUCK CHEV CRAN CAS/CANA I ION IC           | 5BRC33F3VF025446     | 0      | DIESEL  | .00       |      |
| 96812   | 262  | 9) CTATION MACON CHEN PLATED 4 V 4             | BHC33F2VF027057      | 0      | DIESEL  | .00       |      |
| 00012   | 222  | CONTRACTOR WAGON CHEV BLAZER 4 X 4 10          | 48ED18J6EF119408     | 0      | DIESEL  | 1,600.00  |      |
| 00010   | 234  | 63 STATION WAGON CHEV BLAZER 4 X 4 1G          | BED18J9EF115868      | 0      | DIESEL  | 1,600.00  |      |
| · 02010 | 200  | 99 IRUCK CHEV DITLITY ONE TON (SURVEY CREW) 1G | BHC34F7XF006304      | 0      | DIESEL  | 32,810.40 |      |
| 06012   | 200  | 98 TRUCK CREV 3500 UTILITY BODY ONE TON 1G     | SBHK34F6WE236441     | 0      | DIESEL  | .00       |      |
| 20012   | 2/3  | 00 VAN GMC TRUCK 1G                            | KHG35F1Y1275724      | 0      | DIESEL  | • 00      |      |
| 00012   | 403  | OL TRUCK FORD CREW CAB F350 1F                 | DWW32F91EC41468      | 0      | DIESEL  | .00       |      |
| 20812   | 293  | US FORD MPVH 1F                                | MSU41P23ED13425      | 7,650  | DIESEL  | .00       |      |
| 90812   | 297  | 04 FORD F-250 FICK UP UTILITY BODY 1F          | DNF20P64EE09802      | 0      | DIESEL  | 32,843.38 |      |
| 90812   | 498  | 14 FORD F-250 PICK-UP UTILITY BODY             | DNF20P44EE09801      | 0      | DIESEL  | 32,843.39 |      |
| 96822   | 115  | 69 TRUCK INTERNATIONAL TANK 71.                | 79116346297          | 0      | DIESEL  | 15,460.98 |      |
| 96822   | 143  | 84 TRUCK GMC DUMP 7 CY                         |                      | 0      | DIESEL  | .00       |      |
| 96822   | 144  | 84 TRUCK GMC DUMP 7 CY                         |                      | 0      | DIESEL  | .00       |      |
| 96822   | 145  | 84 TRUCK GMC DUMP 7 CY                         |                      | 0      | DIESEL  | .00       |      |
| 96822   | 146  | 84 TRUCK GMC DUMP 7 CY                         |                      | 0      | DIESEL  | .00       |      |
| 96822   | 147  | 84 TRUCK INTERNATIONAL TRACTOR                 |                      | 0      | DIESEL  | .00       |      |
| 96822   | 150  | 86 TRUCK FORD TANKER W/HERBICIDE               |                      | 0      | DIESEL  | .00       |      |
| 96822   | 159  | 90 TRUCK KENWORTH TRACTOR 1X                   | KWD20X8LS543858      | 0      | DIESEL  | .00       |      |
| 96822   | 160  | 90 TRUCK FORD AERIAL LIFT                      |                      | 0      | DIESEL  | .00       |      |
| 96822   | 161  | 91 TRUCK INTERNATIONAL WATER TANK              |                      | 0      | DIESEL  | .00       |      |
| 96822   | 162  | 91 TRUCK INTERNATIONAL W/SEWER-HYDRO JET VA    |                      | ó      | DIESEL  | 00        |      |
| 96822   | 163  | 91 TRUCK FORD DUMP 2 TON                       |                      | ő      | DIESEL  | 00        |      |
| 96822   | 164  | 91 TRUCK FORD DUMP 2 TON                       |                      | 0      | DIESEL  | .00       |      |
| 96822   | 165  | 92 TRUCK INTERNATIONAL ASPHALT DIST. 1000GAL   |                      | ň      | DIRSEL  | .00       |      |
| 96822   | 166  | 93 TRUCK INTERNATIONAL TANK 2000 GALLON        |                      | ŏ      | DIESEI. | .00       |      |
| 96822   | 167  | 93 TRUCK CHEV DUMP 7 CY 1G                     | 82781.738.7103960    | ň      | DIESEL  | .00       |      |
| 96822   | 168  | 93 TRUCK CHEV DUMP 7 CY 1G                     | 827H1.T42.T104079    | ő      | DIRGRI. | .00       |      |
| 96822   | 169  | 93 TRUCK CHEV DUMP 7 CY 1G                     | 80781.720.71 03 003  | ŏ      | DIEGEM  | .00       |      |
| 96822   | 170  | 93 TRUCK CHEV DUMP 7 CY                        | 807H1.T04.71 03 91 C | ŏ      | DIESED  | .00       |      |
| 96822   | 172  | 93 TRUCK CHEV DIMP 7 CY                        | BD7K1.73B.7204042    | Ň      | DIRCRI  | .00       |      |
| 96822   | 173  | 93 TRUCK CHEV DUMP 7 CV 10                     | DPU1 140 104042      | v      | DIESEL  | .00       |      |
| 96822   | 174  | 95 TRUCK INTERNATIONAL W/HYD CRANE CTARED 100  |                      | 0      | DIESEL  | .00       |      |
| 96822   | 175  | 95 TRUCK FORD DIME 7 CV FROM                   | LOCADLIGHO / LOLU    | 0      | DIESET  | .00       |      |
| 96822   | 176  | 95 TRUCK FORD DUMP 7 CY FROM 17                | SIPSOEUSVAL0895      | 0      | DIESEL  | .00       |      |
| 96822   | 380  | 95 TRUCK FORD DUMP / CI FBUU DIME 2 2 /2 CV    | DIFSUEZSVALUS95      | 0      | DIESEL  | .00       |      |
| 06822   | 200  | OF TRUCK INTERNATIONAL DUMP 2 1/2 CY 1H        | TSCABM3SH658117      | 0      | DIESEL  | .00       |      |
| 06010   | 101  | AC TRUCK ZUDUGAL GMC 182                       | 2P7H1J512298         | 0      | DIESEL  | .00       |      |
| 20044   | 102  | 25 TROCK INTERNATIONAL W/HYD BOOM 1H           | TSCABL7SH663117      | 0      | DIESEL  | .00       |      |
| 20044   | 103  | 97 TRUCK INT'L TANK 2000 GAL 1H                | TSDADR3VH454265      | 0      | DIESEL  | .00       |      |
| 96822   | 184  | 97 TRUCK DUMP INTERNATIONAL CAB CHASSIS 7CY 1H | TSDADR9VH453069      | 0      | DIESEL  | .00       |      |
| 96822   | 185  | 97 TRUCK DUMP INTERNATIONAL CAB CHASSIS 7CY 1H | TSDADR5VH453070      | 0      | DIESEL  | .00       |      |
| 96822   | 186  | 97 TRUCK DUMP CAB & CHASSIS 2 1/2 CY INTL 1H   | TSCAALXVH496340      | 0      | DIESEL  | .00       |      |
| 96822   | 187  | 98 TRUCK TRACTOR INT'L 2HS                     | SFBAET2WC042336      | 0      | DIESEL  | .00       |      |
| 96822   | 188  | 99 VAN CHEV CHASSIS W/BODY 1G                  | BJG31F8X1022678      | 0      | DIESEL  | .00       |      |
| 96822   | 189  | 99 VAN CHEV CHASSIS W/BODY 1GH                 | BJG31F8X1014872      | 0      | DIESEL  | .00       |      |
| 96822   | 190  | 99 TRUCK INT'L DUMP 7 CY CAB & CHASSIS 1H7     | TSDADR3XH222784      | 35,000 | DIESEL  | 76,919.22 |      |
| 96822   | 191  | 99 TRUCK INT'L DUMP 7 CY CAB & CHASSIS         | TSDADR5XH222785      | 35,000 | DIESEL  | 76,919.22 |      |
| 96822   | 192  | 01 TRUCK INTL STAKE BODY W/HYD. LIFT GATE 1H7  | ISDAAR811333469      | 0      | DIESEL  | 89,584,29 |      |

PERIOD: 07/01/07 THRU 06/30/08

. ب

.

PERIOD: 07/01/07 THRU 06/30/08

. .

.

|        |       |    |                                          |                     |        |        | ACQUISI    | TION |
|--------|-------|----|------------------------------------------|---------------------|--------|--------|------------|------|
| EQUIPM | ent   | DE | SCRIPTION                                | SERIAL NUMBER       | GVW    | FUEL   | COST       | DATE |
| 96822  | 193   | 01 | VAN FORD CUTAWAY F450                    | 1FDXE45FX1HB19483   | Ô      | DIESEL | . 00       |      |
| 96822  | 195   | 02 | TRUCK GMC CAB/CHASSIS W/AERIAL BUCKET    | 1GDP7H1C22J502244   | 0      | DIESEL | 195.218.25 |      |
| 96822  | 196   | 03 | TRUCK PETERBUILT ASPEN AERIAL BDY MDL320 | 1NPZXOTX33D714738   | 0      | DIESEL | .00        |      |
| 96822  | 197   | 04 | TRUCK INT'L DUMP 2 1/2 CU YD SBA 4 X 2   | 1HTMKAALX4H652483   | Û      | DIESEL | 69.676.86  |      |
| 96822  | 198   | 04 | TRUCK INT'L DUMP 2 1/2 CU YD SBA 4 X 2   | 1HTMKAAL84H652482   | n<br>n | DIESEL | 69 767 86  |      |
| 96822  | 199   | 04 | TRUCK INT'L DUMP 2 1/2 CU SBA 4 X 2      | 1HTMKAAL64H652481   | ň      | DIESEL | 69 676 86  |      |
| 96822  | 200   | 05 | TRUCK GMC TC 5500 C SERIES AND BOOM      | 1GDE5C1255F504746   | 19.500 | DIESEL | 105 090 72 |      |
| 96822  | 201   | 05 | FORD F-350 CREW CAB W/DUMP               | 1FDWW36P04EE09800   | 0      | DIESEL | 40.300.47  |      |
| 96822  | 202   | 05 | FORD F-350 CREW CAB W/DUMP               | 1FDWW36P84EE09799   | 0      | DIESEL | 39.258.81  |      |
| 96822  | 203   | 05 | FORD F-350 CREW CAB W/DUMP               | 1FDWW36P64EE09798   | 0      | DIESEL | 39,258,81  | •    |
| 96822  | 204   | 05 | FORD F-350 CREW CAB W/DUMP               | 1FDWW36P44EE09797   | 0      | DIESEL | 39.258.81  |      |
| 96822  | 205   | 06 | PETERBILT W/2000 GALLON TANK             | 2NPLHZ8X16M632621   | 0      | DIESEL | 134.713.05 |      |
| 96822  | 206   | 06 | FORD F-350 CREW CAB W/DUMP BOX           | 1FDWW36P96EA03212   | 0      | DIESEL | 43.654.12  |      |
| 96822  | 207   | 07 | INTERNATIONAL 2 1/2 CY DUMP TRUCKS       | 1HTMKAAL47H447200   | 0      | DIESEL | 81.037.99  |      |
| 96822  | 208   | 07 | INTERNATIONAL 2 1/2 CY DUMP TRUCK        | IHTMKAAL67H447201   | 0      | DIESEL | 81.037.99  |      |
| 96822  | 209   | 07 | INTERNATIONAL TRUCK TRACTOR              | IHSXRAPT17J447216   | 0      | DIESEL | 130 237 60 |      |
| 96822  | 210   | 02 | PETERBILT FLATBED W/CRANE                | UTINPZLO0X13D714740 | 0      | DIESEL | 263.713.78 |      |
| 96822  | 211   | 03 | PETERBILT TRUCK W/CRANE & DUMP           | UTINPZLO0X33D714741 | 0      | DIESEL | 283.464.08 |      |
| 96822  | 212   | 07 | 2007 FORD 6-MAN CAB WITH DUMP            | 1FDWW36P77EA42916   | 0      | DIESEL | 48,679,27  |      |
| 96822  | 213   | 07 | 2007 FORD 6-MAN CAB WITH DUMP            | 1FDWW36P37EA44582   | Ó      | DIESEL | 48,679.27  |      |
| 96822  | 214   | 07 | PETERBILT TRUCK MODEL 384 WATER TANKER   | 2NPRHN8X08M758541   | 0      | DIESEL | 159,876.14 |      |
| 96822  | 215   | 08 | GMC TRUCK W/1000 GALLON BITUMINOUS TANK  | IGDM7C1B98F403073   | 0      | DIESEL | 182,777.65 |      |
| 96822  | 21.6  | 80 | GMC TRUCK COMMERCIAL CUTAWAY VEHICLE     | 1GDE5V19X8F400556   | 0      | DIESEL | 81,707.20  |      |
| 96832  | 101   | 44 | TRAILER W/300 GAL BITUMULS TANK          | -                   | 0      | DIESEL | .00        |      |
| 96832  | 121   | 94 | TRAILER MILLER WELDING GENERATOR         |                     | 0      | DIESEL | .00        |      |
| 96832  | 123   | 96 | TANK BITUMUL TRAILER MOUNTED             | L250T-802           | Ó      | DIESEL | 15,874,90  |      |
| 96832  | 124   | 96 | TANK BITUMUL TRAILER MOUNTED             | L250T-801           | 0      | DIESEL | .00        |      |
| 96842  | 128   | 79 | TRACTOR JOHN DEERE W/BROOM (USED)        | 317931              | 0      | DIESEL | 2,994.89   |      |
| 96842  | 138   | 66 | TRACTOR KUBOTA W/BOMFORD SIDE & REAR     |                     | 0      | DIESEL | .00        |      |
| 96842  | 141   | 87 | GENERATOR W/FLOOD LIGHTS                 |                     | 0      | DIESEL | .00        |      |
| 96842  | 142   | 87 | GENERATOR W/FLOOD LIGHTS                 |                     | 0      | DIESEL | .00        |      |
| 96842  | 143   | 87 | GENERATOR W/FLOOD LIGHTS                 |                     | 0      | DIESEL | .00        |      |
| 96842  | 144 . | 87 | TRACTOR KUBOTA W/FLAIL MOWER             |                     | 0      | DIESEL | .00        |      |
| 96842  | 145   | 87 | TRACTOR KUBOTA W/FLAIL MOWER             |                     | 0      | DIESEL | .00        |      |
| 96842  | 146   | 87 | TRACTOR JOHN DEERE 1250 W/SWEEPER        |                     | 0      | DIESEL | .00        |      |
| 96842  | 147   | 87 | TRACTOR JOHN DEERE 1650 W/SICKLEBAR      |                     | 0      | DIESEL | .00        |      |
| 96842  | 149   | 88 | TRACTOR KUBOTA MOWER                     |                     | 0      | DIESEL | .00        |      |
| 96842  | 150   | 88 | TRACTOR KUBOTA MOWER                     |                     | 0      | DIESEL | .00        |      |
| 96842  | 151   | 88 | TRACTOR KUBOTA MOWER                     |                     | 0      | DIESEL | .00        |      |
| 96842  | 152   | 88 | WELDER MILLER 250 AMP TRL. MTD.          | JJ404150            | 0      | DIESEL | 7,050.67   |      |
| 96842  | 153   | ₿₿ | WELDER MILLER 250 AMP TRL. MTD.          | JJ521325            | 0      | DIESEL | 7,768.89   |      |
| 96842  | 155   | 89 | TRACTOR CASE W/FLAIL MOWER               |                     | 0      | DIESEL | .00        |      |
| 96842  | 156   | 89 | TRACTOR KUBOTA W/BROOM                   |                     | 0      | DIESEL | .00        |      |
| 96842  | 157   | 90 | TRACTOR FORD W/EXT. FLAIL MOWER          |                     | 0      | DIESEL | .00        |      |
| 96842  | 158   | 90 | TRACTOR FORD W/FLAIL MOWER               |                     | 0      | DIESEL | .00        |      |
| 96842  | 159   | 90 | TRACTOR KUBOTA W/BROOM                   |                     | 0      | DIESEL | .00        |      |
| 96842  | 161   | 90 | TRACTOR CASE I.H.                        |                     | 0      | DIESEL | .00        |      |
| 96842  | 162   | 90 | TRACTOR CASE MOWER I.H.                  |                     | 0      | DIESEL | .00        |      |
| 96842  | 163   | 90 | TRACTOR CASE MOWER I.H.                  |                     | 0      | DIESEL | .00        |      |
| 96842  | 164   | 91 | TRACTOR CASE W/FLAIL MOWER               |                     | 0      | DIESEL | .00        |      |
| 96842  | 165   | 91 | TRACTOR CASE W/SWEEPER                   |                     | 0      | DIESEL | .00        |      |

A-43

## HIGHWAYS - HAWAII DISTRICT OFFICE E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

## PERIOD: 07/01/07 THRU 06/30/08

|        |     |     |                                          |                   |        |                                         | ACQUISIT                | ION  |
|--------|-----|-----|------------------------------------------|-------------------|--------|-----------------------------------------|-------------------------|------|
| EQUIPM | ENT | DE  | SCRIPTION                                | SERIAL NUMBER     | GVW    | FUEL                                    | COST                    | DATE |
| 96842  | 169 | 93  | TRACTOR KUBOTA W/EXT FLAIL MOWER         | 190029            | 0      | DIESEL                                  | 36,745,97               |      |
| 96842  | 172 | 94  | TRACTOR JOHN DEERE 6200 W/FLAIL MOWER    |                   | 0      | DIESEL                                  | .00                     |      |
| 96842  | 173 | 94  | TRACTOR JOHN DEERE 6200 W/FLAIL MOWER    |                   | 0      | DIESEL                                  | .00                     |      |
| 96842  | 174 | 94  | TRACTOR JOHN DEERE 6200 W/FLAIL MOWER    |                   | 0      | DIESEL                                  | .00                     |      |
| 96842  | 176 | 95  | CASE TRACTOR W/ALAMO SUPER HVY FLAIL MOW | JJE0908218        | 0      | DIESEL                                  | 51,723.09               |      |
| 96842  | 180 | 96  | TRACTOR KUBOTA 2ND                       | 10897             | 0      | DIESEL                                  | .00                     |      |
| 96842  | 181 | 97  | TRACTOR CASE IH MODEL 4230 W/EXT SR FLAI | JJE0924451        | 0      | DIESEL                                  | 63.082.93               |      |
| 96842  | 182 | 97  | TRACTOR CASE IH MODEL 4230 W/SR FLAIL MO | JJE0924452        | 0      | DIESEL                                  | 63.082.93               |      |
| 96842  | 184 | 98  | GENERATOR TRAILER MTD. W/LIGHT TOWER     | 288844            | Ō      | DIESEL                                  | 14,280,12               |      |
| 96842  | 185 | 98  | TRACTOR KUBOTA W/SWEEPER BROOM           | 30275             | 0      | DIESEL                                  | 33.384.06               |      |
| 96842  | 186 | 98  | TRACTOR CASE IN W/EXT S/R MT.FLAIL MOWER | JJE1007432        | 0      | DIESEL                                  | 60.545.84               |      |
| 96842  | 187 | 98  | TRACTOR CASE IN W/EXT S/R MTD.FLAIL MOWE | JJE1007433        | Ō      | DIESEL                                  | 60,546.84               |      |
| 96842  | 188 | 99  | TRACTOR CASE UTILITY W/FRT MTD.ROT BROOM | JJE1009709        | 0      | DIESEL                                  | .00                     |      |
| 96842  | 189 | 99  | TRACTOR CASE UTILITY W/FRT MTD ROT BROOM | JJE1009369        | 0      | DIESEL                                  | .00                     |      |
| 96842  | 190 | 99  | TRACTOR KUBOTA UT W/REAR/SIDE FLAIL MOWE | 10560             | 0      | DIESEL                                  | 62.391.57               |      |
| 96842  | 191 | 99  | TRACTOR KUBOTA UT W/REAR/SIDE FLAIL MOWE | 10563             | Ô      | DIRSEL                                  | 62.391.57               |      |
| 96842  | 192 | 99  | TRACTOR KUBOTA UTILITY W/REAR MTD. FLAIL | 40354             | 0      | DIRSEL                                  | 31.061.89               |      |
| 96842  | 193 | 99  | TRACTOR KUBOTA UTILITY W/REAR MTD. FLAIL | 40359             | ŏ      | DIRSEL                                  | 31.061.89               |      |
| 96842  | 194 | 00  | TRACTOR UTILITY KUBOTA W/BOMFORD MOWER   | 10714             | Ő      | DIESEL                                  | 69 891 92               |      |
| 96842  | 196 | 01  | THERMOPLASTIC STRIPING MACHINE W/TRAILER | 1C9FP202X1B411022 | ő      | DIESEL                                  | 00,002.00               |      |
| 96842  | 197 | 02  | SWEEPER TENNANT 6550                     | 6550-9022         | ő      | DIESEL                                  | 45.833.04               |      |
| 96842  | 198 | 93  | SWEEPER, TENNANT VACUUM                  | 3551650           | ñ      | DIRSEL                                  | 1 600 00                |      |
| 96842  | 199 | 95  | SWEEPER NEW CLARKE AMERICAN LINCOLN      | 460302            | ň      | DIESEL                                  | 500.00                  |      |
| 96842  | 200 | 02  | SWEEPER CASE CX50 TRACTOR                | JJE2020831        | ů      | DIESEL                                  | 00                      |      |
| 96842  | 201 | 03  | WELDER MILLER TRAILER MOUNTED            | LC019450          | 0      | DIESRI                                  | 17.799.19               |      |
| 96842  | 202 | 03  | WELDER MILLER TRAILER MOUNTED            | LC019441          | 0<br>0 | DIESRI.                                 | 17.799.18               |      |
| 96842  | 203 | 03  | TRACTOR UTILITY NWHOLLAND W/S/R MTD      | 200553B           | ß      | DIESEL                                  | 72,916,20               |      |
| 96842  | 204 | 03  | TRACTOR NW HOLLAND UTILITY W/S/R MTD.    | 1999498           | ň      | DIESEL                                  | 72,916,20               |      |
| 96842  | 205 | 03  | TRACTOR UTILITY NWHOLLAND W/S/R MTD      | 2004828           | ő      | DIESEL                                  | 72,916,20               |      |
| 96842  | 206 | 04  | TRACTOR ZERO GRASSHOPPER TURN            | 5418440           | n<br>n | DIESEL                                  | 10 729 10               |      |
| 96842  | 207 | 04  | ROTARY BROOM SWEEPSTER                   | HJH011386         | 5.548  | DIESEL                                  | 39 791.41               |      |
| 96842  | 208 | 04  | CASE TRACTOR MOWER                       | HJT010035         | 0,000  | DIESEL                                  | 62 000 00               |      |
| 96842  | 209 | 05  | FLOODLIGHT LIGHT TOWER TRAILER           | 031700004         | 6      | DIRGEI.                                 | 9 241 84                |      |
| 96842  | 210 | 05  | FLOODLIGHT LIGHT TOWER TRATLER           | 031.800004        | ň      | DIRGEL                                  | 0 041 BA                |      |
| 96842  | 211 | 05  | FLOODLIGHT LIGHT TOWER TRAILER           | 031922004         | . v    | DIRSEL                                  | 9 241 84                |      |
| 96842  | 212 | 05  | WELDER MILLER 40 TRAILER MOUNTED         | MIL - 907171      | ů      | DIESEI.                                 | 28 695.00               |      |
| 96842  | 213 | 05  | TRACTOR MONER NEW HOLLAND W/TTGER-GEAR   | 2/2P253/061       | 0      | DINCHI.                                 | 97 916 04               |      |
| 96842  | 220 | 06  | NK TRACTOR MOWER/BOOM MOWER/MOWER W/PTO  | ACP272137         | 0      | DIESEL .                                | 1.011.445.19            |      |
| 96842  | 221 | 06  | NH TRACTOR BOOM MOWER /MOWER W/PTO       | ACP272270         | ů<br>N | DIFSEL                                  | 101 146 19              |      |
| 96842  | 222 | 06  | NH TRACTOR/BOOM MOWER/MOWER W/PTO        | 202274889         | 0      | DIRGRI                                  | 101 146 19              |      |
| 96842  | 223 | 96  | NORBARK EZ CHIPPER MDL 2773              | SN 2773           | n      | DIRSEL                                  | 201,143.15<br>24 343 83 |      |
| 96842  | 224 | 96  | MORBARK EZ CHIPPER MOL 2200E2            | SN 2774           | ň      | DIESEL                                  | 24 343 83               |      |
| 96842  | 225 | 96  | NORBARK CHIPPER MDL 2200EZ               | SN 2775           | ů      | DIESEL                                  | 24 343 83               |      |
| 96842  | 226 | 00  | CUB CADET 60" ROT MOWER                  | 40190280001       | Ň      | DIRGEL                                  | 7 673 91                |      |
| 96852  | 119 | 76  | LOADER FRONT END                         | 10290200001       | Ň      | DIRGEI                                  | 7,575.51                |      |
| 96852  | 121 | 81  | COMPRESSOR INGERSOLI, RAND               |                   | v<br>n | DIESEL                                  | ,00                     |      |
| 96852  | 122 | 81  | COMPRESSOR INGERBOLI, RAND               |                   | v<br>n | DIESEL                                  |                         |      |
| 96852  | 123 | 81  | LOADER CASE BACKHOE AND WD HAMMER        |                   | υ<br>Λ | DIESET.                                 | .00                     |      |
| 96852  | 125 | 82  | GRADER GALTON MOTOR                      |                   | 0<br>N | DIFSEL                                  | .00                     |      |
| 96852  | 126 | 86  | CASE VIBRATORY ROLLER 2-4 TON            |                   | v<br>0 | DIRGRY.                                 | .00                     |      |
| 96852  | 127 | 87  | GRADER GALION MOTOR                      |                   | 0      | DIESEL                                  | .00                     |      |
|        |     | ~ * |                                          |                   |        | A & A & A & A & A & A & A & A & A & A & |                         |      |
#### HIGHWAYS - HAWAII DISTRICT OFFICE E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

#### PERIOD: 07/01/07 THRU 06/30/08

**x**...

| equipm | ent   | DE  | SCRIPTION                                | SERIAL NUMBER                           | GVW    | FUEL             | COST              | DATE |
|--------|-------|-----|------------------------------------------|-----------------------------------------|--------|------------------|-------------------|------|
| 96852  | 130   | 87  | ROLLER CASE VIRBRATORY MODEL 252         |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 131 , | 88  | ROLLER CASE VIRBRATORY MODEL 7528        |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 132   | 88  | GRADER CATERPILLAR MOTOR                 |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 133   | 88  | LOADER JOHN DEERE W/BACKHOE              |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 134   | 90  | FORKLIFT KOMATSU 5000 LBS.               |                                         | 0      | DIESEL           |                   |      |
| 96852  | 135   | 90  | LOADER CASE BACKHOE                      |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 136   | 91  | LOADER JOHN DEERE MODEL 544E             |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 137   | 91  | COMPRESSOR INGERSOL RAND AIR             |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 138   | 92  | GRADER CHAMPION MOTOR                    |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 139   | 92  | LOADER KOMATSU                           | 12941                                   | 0<br>0 | DIESEL           | .00               |      |
| 96852  | 140   | 93  | COMPRESSOR SULLAIR 750 CFM               | 004-111603                              | 0      | DIESEL           | 40.657.42         |      |
| 96852  | 141   | 93  | UNILOADER CASE SKID STEER                | JAF0120730                              | 0      | DIESEL           | 16,897,97         |      |
| 96852  | 142   | 93  | ROLLER DYNAPAC                           |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 143   | 93  | LOADER KOMATSU FRONT END                 |                                         | 0      | DIESEL           | .00               |      |
| 96852  | 144   | 94  | COMPRESSOR INGERSOLL RAND AIR            |                                         | ñ      | DIESEL           | .00               |      |
| 96852  | 145   | 94  | COMPRESSOR INGERSOLL RAND ATR            |                                         | 0      | DIESEI.          | .00               |      |
| 96852  | 146   | 94  | COMPRESSOR INGERSOLL RAND AIR            |                                         | ő      | DIRSEI.          | .00<br>00         |      |
| 96852  | 147   | 79  | TRUCK LIFT MOD MGO                       | 794541                                  | ő      | DIRSEL           | 24 443 00         |      |
| 96852  | 149   | 96  | LOADER MELDOE BORCAT INILLOADER          | 723031<br>610000136                     | 0      | DIRGEL           | A4,445.00         |      |
| 96852  | 149   | 99  | LOADER MELROE BOBCAT MODEL 763           | 512220130<br>61000000                   | ő      | DIESED<br>DIESED | .00               |      |
| 96862  | 150   | 00  | GRADER MOTOR CHANDION MODEL 7105 DIRECT  | 30925                                   | 0      | DISSEU           | .00<br>.11 145 35 |      |
| 96852  | 151   | 00  | BACKNOW /LOADER NEW VOLLAND SIVUE NAMER  | 31035674                                |        | DIROPI           | 111,145,15        |      |
| 96852  | 160   | 00  | DOZED TOADER AN HODIARD WITT HEAMER      | 50201010                                | 0      | DIGGED           | 77,042.V7         |      |
| 96852  | 152   | 01  | DOLLED DVMDAC CCLA2 VIERATORY            | 50301012                                | 0      | DIESEL           | 60,01/.2/<br>00   |      |
| 06052  | 153   | 0.1 | LONDER DINAFAC CCIV2 VIBRAIORI           | 00113322                                | 0      | DIBOBI           | .00               |      |
| 040652 | 155   | 0.7 | TRUCYCAC RE W CCUMARZE CMEEDER           | 100000000000000000000000000000000000000 | 24 000 | DIESEL           | 100 000 10        |      |
| 00002  | 155   | 02  | TRUCKONC F/ N/SCHWARZE SWEEPER           | 16DP761CX23504097                       | 34,800 | DIESED           | 173,007.46        |      |
| 90002  | 167   | 04  | TRUCK GHC F/ W/SCHWARZE SWEEPER          | 1GDP7C12C1J504263                       | 34,800 | DIESEL           | 1/3,007.46        |      |
| 20032  | 100   | 02  | TOADER CASE MODER 221D                   | (193134186                              | 0      | DIESED           | 99,061.87         |      |
| 30032  | 150   | 04  | ROLLER DINAPAC 5-8 TON MODEL CC222       | 61/11280                                | 0      | DIESEL           | 74,765.15         |      |
| 90054  | 159   | 02  | ROBBER DINAPAC 2-4 TON CCI02             | 60116496                                | 0      | DIESEL           | 115 604 06        |      |
| 96854  | 160   | 04  | GRADER, GALION MODEL 830 B               | 0210932                                 | U      | DIESEL           | 115,624.26        |      |
| 26852  | 161   | 03  | GRADER CASE ARTICULATED MOTOR            | HB20020107GR84502                       | 0      | DIESEL ·         | 111,978,45        |      |
| 96852  | 162 . | 20  | LOADER NEW HULLAND SACKHOE AND HAMMER    | 031046566                               | 0      | DIESEL           | 92,186.91         |      |
| 96852  | 163   | 04  | ROLLER HAMM ARTICULATED TANDEM RD70      | 1520780                                 | 0      | DIESEL           | 64,999.58         |      |
| 96852  | 164   | 05  | FORKLIFT KOMATSU FD30T-14                | 589170A                                 | 0      | DIESEL           | 28,124.82         |      |
| 96852  | 165   | 05  | BACKHOE NEW HOLLAND W/HAMMER LB1105E205  | 31055615/82758                          | 0      | DIESEL           | 88,541.00         |      |
| 96852  | 166   | 06  | VACUUM CLEANER TRUCK PETERBILT 357       | INPAL00X26D632940                       | 0      | DIESEL           | 304,057.09        |      |
| 96852  | 167   | 06  | KOMATSU FRONT-END WHEEL LOADER           | 68325                                   | 0      | DIESEL           | 100,793.10        |      |
| 96852  | 108   | 06  | GMC TRUCK W/SWEEPER ATTACHMENT           | 1GDM7F1396F429132                       | 33,000 | DIESEL           | 238,558.19        |      |
| 96852  | 169   | 06  | 2006 GMC TRUCK W/SWBEPER ATTACHMENT      | 1GDM7F1336F429515                       | 33,000 | DIESEL           | 238,558.19        |      |
| 96852  | 170   | 07  | PETERBILT 357 VAC-CON W/WATER TANK TRUCK | 1NPAL00X27D683050                       | 0      | DIESEL           | 326,148.08        |      |
| 96852  | 172   | 06  | CASE CRAWLER EXCAVATOR                   | DAC251358                               | 0      | DIESEL           | 286,456.50        |      |
| 96852  | 173   | 07  | 2007 CASE 845 TIER 3 MOTOR GRADER        | N7AF03531                               | 0      | DIESEL           | 173,749.00        |      |
| 96862  | 106   | 85  | BULLDOZER JOHN DEERE CRAWLER             |                                         | 0      | DIESEL           | - ,00             |      |
| 96862  | 109   | 93  | CHIPPER OLATHE MODEL 986CD               | 986603                                  | 0      | DIESEL           | 18,476.63         |      |
| 96862  | 110   | 93  | CHIPPER OLATHE MODEL 986CD               | 986604                                  | 0      | DIESEL           | 18,476.63         |      |
| 96862  | 126   | 07  | KOMATSU CRAWLER DOZER D61EX-15           | B45407                                  | 0      | DIESEL           | 207,822.16        |      |
| 96862  | 127   | 07  | BANDIT 280 CHIPPER BA181                 | 1148                                    | 0      | DIESEL           | 48,333.02         |      |
| 96862  | 128   | 07  | BANDIT 280 CHIPPER BA182                 | 1150                                    | 0      | DIESEL           | 48,333.03         |      |
|        |       |     |                                          |                                         |        |                  | FUEL TYPE TOTA    | T .  |
|        |       |     |                                          |                                         |        |                  |                   |      |

----ACQUISITION-----

| E/U ALTERNATIVE | FUEL REPORT F | BY FUEL TYPE | 9/10/08 |
|-----------------|---------------|--------------|---------|
|                 |               |              |         |

HIGHWAYS - HAWAII DISTRICT OFFICE

PERIOD: 07/01/07 THRU 06/30/08

| ε∕u  | ALTERNATIVE | FUEL   | REPORT      | ву | FUEL | TYPE | 9/10/ |
|------|-------------|--------|-------------|----|------|------|-------|
| -, - |             | 101011 | 10412 010 1 |    | 1000 | LIFE | 2/20/ |

| EQUIPMENT     DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |      |                                             |                    |        |                | ACQUISITI       | CON  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|---------------------------------------------|--------------------|--------|----------------|-----------------|------|
| 9426   926   00   HPR WORK PROGRAM   0   NOT APPLICABLE   00     96812   820   00   MYSO - WORK ORDER FOR MYSO C/C   0   NOT APPLICABLE   00     96813   104   53   TRAILER JOHN DEERE W/TILTNO 3 TON   0   NOT APPLICABLE   00     96833   104   53   TRAILER JOHN DEERE W/TILTNO 3 TON   0   NOT APPLICABLE   00     96832   106   77   TRAILER SIDE BUILT 1/J CTO CARGO   0   NOT APPLICABLE   00     96833   116   84   TRAILER SIDE BUILT 1/J CTO CARGO   0   NOT APPLICABLE   00     96833   116   87   TRAILER SIDE MUILTY   0   NOT APPLICABLE   00     96832   116   87   TRAILER ZIENNU UTILITY   0   NOT APPLICABLE   00     96833   127   97   TRAILER ZIENNU UTILITY   0   NOT APPLICABLE   00     96832   128   96   TRAILER ZIENNU UTILTY   0   NOT APPLICABLE   00     96832   129   TRAILER ZIENNU UTILTY   0   NOT APPLICABLE   00     96832                                                                                                                                                                                                                                                                        | EQUIPM | ENT  | DESCRIPTION                                 | SERIAL NUMBER      | GVW    | FUEL           | COST            | DATE |
| Parts     Parts <th< td=""><td>96103</td><td>016</td><td>AA URD MADY BRACEN</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                       | 96103  | 016  | AA URD MADY BRACEN                          |                    |        |                |                 |      |
| 1000     1000     1000     0     NOT     APPLICABLE     000       9633     104     53     TRALER JOHN DERE W/TLINING 3 TON     0     NOT     APPLICABLE     000       9633     104     53     TRALER SHOP BUILT 1/J ZINC CARGO     0     NOT     APPLICABLE     000       9633     108     77     TRALER SHOP BUILT 1/J ZINC CARGO     0     NOT     APPLICABLE     000       9633     118     84     TRALER SIGN BUILT 1/J ZINC CARGO     0     NOT     APPLICABLE     000       9633     118     87     TRALER ZIENAN UTILITY     0     NOT     APPLICABLE     000       9633     118     87     TRALER ZIENAN UTILITY     0     NOT     APPLICABLE     000       9633     129     95     TRALER ZIENAN UTILITY     0     NOT     APPLICABLE     000       9633     127     97     TRALER ZIENAN UTILITY     0     NOT     APPLICABLE     000       9633     127     97     TRALER ZIENAN UTILITY     0     NOT<                                                                                                                                                                                                                    | 96912  | 020  | OU HER WORK PROGRAM                         |                    | 0      | NOT APPLICABLE | .00             |      |
| 102     103     104     104     0     NOT     APPLICABLE     .00       96323     107     55     TRAILER JOHN DEREW WITLINN 3 TON     0     NOT     APPLICABLE     .00       96433     107     TRAILER JEND BUILT 1 // 2 TON CARGO     0     NOT     APPLICABLE     .00       96833     115     64     TRAILER JENNN UTLITY     0     NOT     APPLICABLE     .00       96833     116     64     TRAILER ZIENNN UTLITY     0     NOT     APPLICABLE     .00       96833     118     7 <trailer td="" utlity<="" ziennn="">     0     NOT     APPLICABLE     .00       96833     125     95     TRAILER ZIENN UTLITY     0     NOT     APPLICABLE     .00       96833     126     95     TRAILER ZIENN UTLITY     0     NOT     APPLICABLE     .00       96832     126     95     TRAILER ZIENN KECTRONIC     LAMBISIGTABATELAB     .00     NOT     APPLICABLE     .00       96331     127     77     TRAILER LOAD KING     EALSZSSVIL2666</trailer>                                                                                                                                                                                     | 06833  | 1020 | A MUNICE DEVENDER FOR MUSIC/C               |                    | 0      | NOT APPLICABLE | .00             |      |
| Jobs     Jobs     Jobs     ONT     APPLICABLE     OOD       96321     107     5     TRALLER SHOP BUILT 1/2/100 CARGO     NOT APPLICABLE     .00       96332     108     77     TRALLER FERRE CUSTOM MADE SCALE     0     NOT APPLICABLE     .00       96332     116     6     TRALLER KING TRALL     0     NOT APPLICABLE     .00       96323     117     7     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     118     87     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     118     87     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     120     37     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     123     9     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     123     9     TRALLER ZIERAN UTILITY     0     NOT APPLICABLE     .00       96323     123     9     TRALLER ZIERAN UTILITY     0                                                                                                                                                                                                   | 90032  | 104  | 47 IRAIDER KARBAGER TIP TOP 7 TON           |                    | 0      | NOT APPLICABLE | .00             |      |
| 2423     207     35     IRAILER SIGN FOLDT 1 // 1 /0 NCARGO     0     NOT APPLICABLE     00       96832     115     64     TRALLER FERREL (USTOM MAD SCALE     0     NOT APPLICABLE     00       96833     116     64     TRALLER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     117     87     TRALER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     118     97     TRALER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     118     97     TRALER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     126     95     TRALER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     126     95     TRALER SILMAN UTLLITY     0     NOT APPLICABLE     00       96832     127     97     TRALER SILMAN UTLLTY     0     NOT APPLICABLE     00       96832     128     98     DOARD MESSAGE MARENCAN RECTRONIC     LAMMSISITA376129     NOT APPLICABLE     00       96833     139                                                                                                                                                                                      | 06032  | 104  | 55 TRAILER JURN DEERE W/TILTING 3 TON       | •                  | 0      | NOT APPLICABLE | .00             |      |
| 106     7.1     TRAILER FERRER LOSION MADE SCALE     0     NOT APPLICABLE     .00       96532     115     84 TRAILER XIRMAN UTILITY     0     NOT APPLICABLE     .00       96532     117     87 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     118     87 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     118     87 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     118     87 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     125     95 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     126     95 TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96532     127     97 TRAILER ZIENAN EXCITONIC     LAMMSISIOTA378125     0     NOT APPLICABLE     .00       96532     129     8 COARD MESSAGE AMERICAN ELECTRONIC     LAMMSISIOTA378125     0     NOT APPLICABLE     .00       96532     131     99 EOARD MESSAGE AMERICAN ELECTRONIC     LAMMSISIOTA378125     0     NOT                                                                                                                 | 06032  | 100  | 56 TRAILER SHOP BUILT I 1/2 TON CARGO       |                    | 0      | NOT APPLICABLE | .00             |      |
| 94832     11.3     84     TRAILER X.ING.TRAIL     0     NOT APPLICABLE     00       96832     11.6     85     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     00       96832     11.8     87     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     00       96832     11.8     87     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     00       96832     11.9     89     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     00       96832     12.6     95     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     00       96832     12.6     95     TRAILER LODA KING     IB4L38239Y1121666     NOT APPLICABLE     00       96832     12.9     97     TRAILER ZIENAN MERICAN ELECTRONIC     IA9MS151071A97129     NOT APPLICABLE     00       96832     13.9     98     ROAD MESSAGE AMERICAN ELECTRONIC     IA9MS151373/8129     NOT APPLICABLE     0.0       96832     13.1     98     BOAD MESSAGE ADECO, TRL MTD. CHANGELE 85567     NOT APPLICABLE     0.0       96832 <td>20022</td> <td>100</td> <td>// TRAILER FERREI CUSTOM MADE SCALE</td> <td></td> <td>0</td> <td>NOT APPLICABLE</td> <td>.00</td> <td></td> | 20022  | 100  | // TRAILER FERREI CUSTOM MADE SCALE         |                    | 0      | NOT APPLICABLE | .00             |      |
| 2022 11.6     36     TRAILER 2 INFAN UTLITY     0     NOT APELICABLE     0.00       9632 11     87     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9632 11.8     87     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9632 11.9     9     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9632 11.6     9     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9653 11.6     9     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9653 12.7     9     TRAILER ZIEMAN UTLITY     0     NOT APELICABLE     0.00       9653 12.7     9     TRAILER ZIEMAN UTLICAN ELECTRONIC     LAMMSISIUTAJ7812.9     0     NOT APELICABLE     0.00       9632 12.9     9     BOARD MESSAGE AMERICAN ELECTRONIC     LAMMSISIUTAJ7812.5     0     NOT APELICABLE     0.00       9633 131     9     BOARD MESSAGE SOLARTECH     LAMMSISIUTAJ7812.5     0     NOT APELICABLE     0.00       9633 133     0     EOARD MESSAGE SOLARTECH     LAMMSISIUTAJ40510.0                                                                                                                | 20034  | 110  | 84 TRAILER KING TRAIL                       |                    | 0      | NOT APPLICABLE | .00             |      |
| 9632     117     60     NOT APPLICABLE     00       9633     118     87     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96633     118     87     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96633     113     95     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96633     113     96     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96633     116     96     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96632     126     96     TRALLER ZIENAN UTILITY     0     NOT APPLICABLE     00       96632     126     96     TRALER ZIENAN UTILITY     130%51517378129     0     NOT APPLICABLE     00       96633     130     98     TRARE MERICAN ELECTRONIC     LAMSIS1317378129     0     NOT APPLICABLE     00       96832     130     92     TRALER ZIENAN CARRIER     116.0     LZC7152922723815     9,999     NOT APPLICABLE     00       96832                                                                                                                                                                                            | 20032  | 110  | 86 TRAILER ZIEMAN UTILITY                   |                    | 0      | NOT APPLICABLE | .00             |      |
| 9632     116     97     TRAILER KING TEALL     ITKJ04323KM7043812     0     NOT APPLICABLE     .00       96832     112     93     TRAILER KING TEALL     ITKJ04323KM7043812     0     NOT APPLICABLE     .00       96832     126     95     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96832     126     95     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96832     126     95     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96832     127     97     TRAILER ZIENAN UTILITY     0     NOT APPLICABLE     .00       96832     127     97     TRAILER ZIENAN UTILITY     LADMSISIOTASTA12166     NOT APPLICABLE     .00       96832     137     95     BOARD MESSAGE AMERICAN BLECTRONIC     LADMSISIOTASTA12126     NOT APPLICABLE     .00       96832     133     02     DARD MESSAGE SOLARTECH     LZC7125922273815     9,999     NOT APPLICABLE     .00       96832     136     02     DOARD MESSAGE SOLARTECH     4GM2MIS12140851                                                                                                                                      | 20032  | 110  | 87 TRAILER ZIEMAN UTILITY                   |                    | 0      | NOT APPLICABLE | .00             |      |
| 9683   119   69   74.1LER XING TRAIL   1TKJ04323XN7043812   0   NOT APPLICABLE   .00     9683   126   93   TRAILER XING TRAIL   0   NOT APPLICABLE   .00     9683   126   96   TRAILER XING TRAIL   0   NOT APPLICABLE   .00     9683   127   97   TRAILER XING TRAIL   184136239V1121666   0   NOT APPLICABLE   .00     96633   128   98   BOARD MESSAGE AMERICAN BLECTRONIC   LAMMSI513TA78129   0   NOT APPLICABLE   .00     96632   130   98   TRAILER SPECTRUM BCT 16-7500   LS9BS2420WH364284   0   NOT APPLICABLE   .00     96633   131   99   DEOARD MESSAGE ADDCO, TRL WTD. CHANGEABLE   585967   0   NOT APPLICABLE   .00     96633   134   02   EOARD MESSAGE SOLARTECH   4GM2MSI5121408519   0   NOT APPLICABLE   .00     96833   135   02   EOARD MESSAGE SOLARTECH   4GM2MSI5121408511   0   NOT APPLICABLE   .00     96833   136   02   EOARD MESSAGE SOLARTECH   4GM2MSI5121408513   0   N                                                                                                                                                                                                                            | 90832  | 118  | 87 TRAILER ZIEMAN UTILITY                   |                    | 0      | NOT APPLICABLE | .00             |      |
| 96832   120   93   TRAILER ZIENAN UTILITY   0   NOT APPLICABLE   .00     96832   125   95   TRAILER   0   NOT APPLICABLE   .00     96832   126   96   TRAILER   0   NOT APPLICABLE   .00     96832   128   98   BOARD MESSAGE AMERICAN ELECTRONIC   LAMMSISIOTA378129   NOT APPLICABLE   .00     96832   129   98   ROARD MESSAGE AMERICAN ELECTRONIC   LAMMSISIJAT378125   NOT APPLICABLE   .00     96832   131   99   BOARD MESSAGE AMERICAN ELECTRONIC   LAMMSISIJAT378125   NOT APPLICABLE   .00     96832   131   99   BOARD MESSAGE ADECO, TRL NTD. CHANGEABLE   585967   0   NOT APPLICABLE   .00     96832   132   02   TRAILER ZIEMAN CARRER 1150   L2CT215222223815   9,999   NOT APPLICABLE   .00     96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M151021406511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021406511   0   NOT APPLICABLE   .00     96832<                                                                                                                                                                                                                   | 96834  | 113  | 89 TRAILER KING TRAIL                       | 1TKJ04323KM7043812 | 0      | NOT APPLICABLE | .00             |      |
| 96832   124   96   TRAILER   0   NOT APPLICABLE   .00     96832   127   97   TRAILER LOAD KING   1B4138239V1121666   0   NOT APPLICABLE   .00     96832   128   98   BOARD MESSAGE AMERICAN ELECTRONIC   LASMS1513TA78129   0   NOT APPLICABLE   .00     96832   129   98   BOARD MESSAGE AMERICAN ELECTRONIC   LASMS1513TA78125   0   NOT APPLICABLE   .00     96832   130   99   TRAILER SPECTRUM BCT 16-7500   LS9B52420WH364284   0   NOT APPLICABLE   .00     96832   132   02   TRAILER SPECTRUM BCT 16-7500   LS9B52420WH364284   0   NOT APPLICABLE   .00     96833   134   02   DOARD MESSAGE SOLARTECH   4GM2M151721408510   0   NOT APPLICABLE   .00     96832   134   02   DOARD MESSAGE SOLARTECH   4GM2M151721408511   0   NOT APPLICABLE   .00     96832   136   02   DOARD MESSAGE SOLARTECH   4GM2M15121408514   0   NOT APPLICABLE   .00     96832   136   02   DOARD MESSAGE SOLARTECH   4GM2M151421                                                                                                                                                                                                               | 96832  | 120  | 93 TRAILER ZIEMAN UTILITY                   |                    | 0      | NOT APPLICABLE | .00             |      |
| 96832   126   96   TRAILER   0   NOT APPLICABLE   .00     96832   128   98   BOARD MESSAGE AMERICAN ELECTRONIC   IA9MS1510TA378129   0   NOT APPLICABLE   .00     96832   129   98   BOARD MESSAGE AMERICAN ELECTRONIC   IA9MS1510TA378129   0   NOT APPLICABLE   .00     96832   129   98   BOARD MESSAGE AMERICAN ELECTRONIC   IA9MS1510TA378129   0   NOT APPLICABLE   .00     96832   130   99   BOARD MESSAGE ADDCO, TRL NTD. CHANGEABLE   585967   0   NOT APPLICABLE   8,020.78     96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M151721408510   0   NOT APPLICABLE   .00     96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M151721408510   0   NOT APPLICABLE   .00     96832   135   02   BOARD MESSAGE SOLARTECH   4GM2M15121408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   1.00     96832   136   02   BOARD MESSAGE SOLARTECH                                                                                                                                                                                                         | 96832  | 125  | 96 TRAILER                                  |                    | 0      | NOT APPLICABLE | .00             |      |
| 96031   127   97   TRAILER LOAD KING   1B4L3239V1121666   0   NOT APPLICABLE   .00     96032   128   98   BOARD MESSAGE AMERICAN ELECTRONIC   1A9MS1513TA378125   0   NOT APPLICABLE   .00     96832   129   98   BOARD MESSAGE AMERICAN ELECTRONIC   1A9MS1513TA378125   0   NOT APPLICABLE   .00     96832   130   99   TRAILER SPECTRUM BCT 16-7500   1S9BS2420WB364284   0   NOT APPLICABLE   .00     96832   131   99   BOARD MESSAGE ADECO, TRL MTD. CHANGEABLE   585967   0   NOT APPLICABLE   .00     96832   132   02   TRAILER ZIEMAN CARRIER 1150   1ZCT21S2922P23815   9,999   NOT APPLICABLE   .00     96832   134   02   EOARD MESSAGE SOLARTECH   4CM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4CM2M151021408512   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4CM2M151021408513   0   NOT APPLICABLE   .00     96832   137   02                                                                                                                                                                                                        | 96832  | 126  | 96 TRAILER                                  |                    | 0      | NOT APPLICABLE | .00             |      |
| 96832   128   98   BOARD MESSAGE AMERICAN ELECTRONIC   1A981510TA378129   0   NOT APPLICABLE   .00     96832   130   98   TRAILER SPECTRUM BCT 16-7500   1S9B52420WH364284   0   NOT APPLICABLE   .00     96832   131   99   BOARD MESSAGE AMERICAN ELECTRONIC   1ASM31513TA378125   0   NOT APPLICABLE   .00     96832   131   99   BOARD MESSAGE ADDCO, TRL NTD. CHANGEABLE   58567   0   NOT APPLICABLE   32,885.21     96832   133   02   BOARD MESSAGE SOLARTECH   4CM2M151021408519   0   NOT APPLICABLE   .00     96832   134   02   BOARD MESSAGE SOLARTECH   4CM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4CM2M15121408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4CM2M151221408512   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4CM2M151221408514   0   NOT APPLICABLE   1.707.76     96832   140   O                                                                                                                                                                                                  | 96832  | 127  | 97 TRAILER LOAD KING                        | 1B4L38239V1121666  | 0      | NOT APPLICABLE | .00             |      |
| 96832   129   98   BOARD MESSAGE AMERICAN ELECTRONIC   1A9M31513TA378125   0   NOT APELICABLE   .00     96832   131   99   BOARD MESSAGE ADDCO, TRL MTD. CHANGEABLE   585967   0   NOT APELICABLE   32,885.21     9632   132   02   TRAILER ZIEMAN CARRIER 1150   12C72152922B3815   9,999   NOT APELICABLE   32,885.21     96332   134   02   BOARD MESSAGE SOLARTECH   4CM2M151021408510   0   NOT APELICABLE   .00     96332   135   02   BOARD MESSAGE SOLARTECH   4CM2M151921408511   0   NOT APELICABLE   .00     96332   135   02   BOARD MESSAGE SOLARTECH   4CM2M151021408512   0   NOT APELICABLE   .00     96332   136   02   BOARD MESSAGE SOLARTECH   4CM2M151421408514   0   NOT APELICABLE   .00     96332   136   02   BOARD MESSAGE SOLARTECH   4CM2M151421408514   0   NOT APELICABLE   .00     96332   137   02   BOARD MESSAGE SOLARTECH   4CM2M151421408514   0   NOT APELICABLE   .1,770.76     96332   140                                                                                                                                                                                                     | 96832  | 128  | 98 BOARD MESSAGE AMERICAN ELECTRONIC        | 1A9MS1510TA378129  | 0      | NOT APPLICABLE | .00             |      |
| 96832   130   98   TRAILER SPECTRUM BCT 16-7500   LS9BS2420WH364284   0   NOT APPLICABLE   .00     96832   132   02   TRAILER ZIEMAN CARRIER 1150   12C721S292ZP23815   9,999   NOT APPLICABLE   8,020.78     96832   133   02   BOARD MESSAGE SOLARTECH   4GM2M151021408509   0   NOT APPLICABLE   .00     96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   135   02   BOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408514   0   NOT APPLICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151021408514   0   NOT APPLICABLE   .00     96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   12C7212S286ZP26968   0   NOT APPLICABLE   .00     96832   140   06   <                                                                                                                                                                                                           | 96832  | 129  | 98 BOARD MESSAGE AMERICAN ELECTRONIC        | 1A9MS1513TA378125  | 0      | NOT APPLICABLE | .00             |      |
| 96832   131   99   BOARD MESSAGE ADDCO, TRL MTD. CHANGEABLE   585967   0   NOT APELICABLE   32,685.21     96832   132   02   TRAILER ZIEMAN CARRIER 1150   12CT215292273815   9,999   NOT APELICABLE   6,020.78     96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M15121408510   0   NOT APELICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M15121408511   0   NOT APELICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M15121408513   0   NOT APELICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M15121408513   0   NOT APELICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151221408514   0   NOT APELICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT21S2X62F26969   9,999   NOT APELICABLE   11,770.76     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   12CB1A0A861496019   0   NOT APELICABLE   34,331.84     96842   216                                                                                                                                                                                           | 96832  | 130  | 98 TRAILER SPECTRUM BCT 16-7500             | 159BS2420WH364284  | 0      | NOT APPLICABLE | -00             |      |
| 96832   132   02   TRAILER ZIEMAN CARRIER 1150   12CT21S292ZP23815   9,999   NOT APPLICABLE   60     96832   133   02   BOARD MESSAGE SOLARTECH   4GM2M151021408509   0   NOT APPLICABLE   .00     96832   135   02   BOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408512   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M151221408514   0   NOT APPLICABLE   .00     96832   138   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT21S2062P26968   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT31S2062P26967   33,200   NOT APPLICABLE   11,770.76     96842   214   07 </td <td>96832</td> <td>131</td> <td>99 BOARD MESSAGE ADDCO, TRL MTD. CHANGEABLE</td> <td>585967</td> <td>0</td> <td>NOT APPLICABLE</td> <td>32,885.21</td> <td></td>                              | 96832  | 131  | 99 BOARD MESSAGE ADDCO, TRL MTD. CHANGEABLE | 585967             | 0      | NOT APPLICABLE | 32,885.21       |      |
| 96832   133   02   EOARD MESSAGE SOLARTECH   4GM2M151021408509   0   NOT APPLICABLE   .00     96832   134   02   EOARD MESSAGE SOLARTECH   4GM2M151721408510   0   NOT APPLICABLE   .00     96832   135   02   EOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   EOARD MESSAGE SOLARTECH   4GM2M151021408512   0   NOT APPLICABLE   .00     96832   137   02   EOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   136   02   EOARD MESSAGE SOLARTECH   4GM2M151221408514   0   NOT APPLICABLE   .00     96832   136   02   EOARD MESSAGE SOLARTECH   4GM2M151221408514   0   NOT APPLICABLE   .00     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT21S262F26967   33,200   NOT APPLICABLE   11,770.76     96842   141   06   TRAFFIC SIGMAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   215   07 <t< td=""><td>96832</td><td>132</td><td>02 TRAILER ZIEMAN CARRIER 1150</td><td>1ZCT21S292ZP23815</td><td>9,999</td><td>NOT APPLICABLE</td><td>8,020.78</td><td></td></t<>                                      | 96832  | 132  | 02 TRAILER ZIEMAN CARRIER 1150              | 1ZCT21S292ZP23815  | 9,999  | NOT APPLICABLE | 8,020.78        |      |
| 96832   134   02   BOARD MESSAGE SOLARTECH   4GM2M151721408510   0   NOT APPLICABLE   .00     96832   135   02   BOARD MESSAGE SOLARTECH   4GM2M151021408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408513   0   NOT APPLICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M151421408514   0   NOT APPLICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151421408514   0   NOT APPLICABLE   .00     96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2152262P26966   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1227H   12CT3122662P26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   215   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216                                                                                                                                                                                               | 96832  | 133  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151021408509  | 0      | NOT APPLICABLE | .00             |      |
| 96832   135   02   BOARD MESSAGE SOLARTECH   4GM2M151921408511   0   NOT APPLICABLE   .00     96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408512   0   NOT APPLICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151221408514   0   NOT APPLICABLE   11,770.76     96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT21S286ZP26968   0   NOT APPLICABLE   11,770.76     96832   141   06   TRAILER ZIEMAN EQUIPMENT 2327H   12CT21S286ZP26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496016   0   NOT APPLICABLE   34,354.64     96842 <td< td=""><td>96832</td><td>134</td><td>02 BOARD MESSAGE SOLARTECH</td><td>4GM2M151721408510</td><td>0</td><td>NOT APPLICABLE</td><td>.00</td><td></td></td<>                        | 96832  | 134  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151721408510  | 0      | NOT APPLICABLE | .00             |      |
| 96832   136   02   BOARD MESSAGE SOLARTECH   4GM2M151021408512   0   NOT APPLICABLE   .00     96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151421408514   0   NOT APPLICABLE   .00     96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2152862P26968   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2152862P26967   33,200   NOT APPLICABLE   11,770.76     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   215   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496017   0   NOT APPLICABLE   34,354.64     96862 <t< td=""><td>96832</td><td>135</td><td>02 BOARD MESSAGE SOLARTECH</td><td>4GM2M151921408511</td><td>0</td><td>NOT APPLICABLE</td><td>.00</td><td></td></t<>                         | 96832  | 135  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151921408511  | 0      | NOT APPLICABLE | .00             |      |
| 96832   137   02   BOARD MESSAGE SOLARTECH   4GM2M151221408513   0   NOT APPLICABLE   .00     96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151421408514   0   NOT APPLICABLE   .00     96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2182862P26968   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2182862P26969   9,999   NOT APPLICABLE   11,770.76     96832   141   06   TRAILER ZIEMAN EQUIPMENT 2327H   12CT3182862P26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496017   NOT APPLICABLE   34,354.64     96862   120                                                                                                                                                                       | 96832  | 136  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151021408512  | 0      | NOT APPLICABLE | .00             |      |
| 96832   138   02   BOARD MESSAGE SOLARTECH   4GM2M151421408514   0   NOT APPLICABLE   .00     96832   139   05   TRAILER ZIEMAN EQUIPMENT 1150   12CT2152862P26968   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   12CT2152862P26969   9,999   NOT APPLICABLE   11,770.76     96832   141   06   TRAILER ZIEMAN EQUIPMENT 2327H   12CT3152862P26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64                                                                                                                                                                       | 96832  | 137  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151221408513  | 0      | NOT APPLICABLE | .00             |      |
| 96832   139   06   TRAILER ZIEMAN EQUIPMENT 1150   1ZCT21S286ZP26968   0   NOT APPLICABLE   11,770.76     96832   140   06   TRAILER ZIEMAN EQUIPMENT 1150   1ZCT21S286ZP26969   9,999   NOT APPLICABLE   11,770.76     96832   141   06   TRAILER ZIEMAN EQUIPMENT 2327H   1ZCT31S286ZP26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9BLA0A861496019   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9BLA0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGBLA0A861496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGBLA0A661496016   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GBLA0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED FOWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91  <                                                                                                                                                            | 96832  | 138  | 02 BOARD MESSAGE SOLARTECH                  | 4GM2M151421408514  | 0      | NOT APPLICABLE | .00             |      |
| 96832   140   06 TRAILER ZIEMAN EQUIPMENT 1150   1ZCT21S2X6ZP26969   9,999   NOT APPLICABLE   11,770.76     96832   141   06 TRAILER ZIEMAN EQUIPMENT 2327H   1ZCT31A286GR26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07 TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   34,331.84     96842   215   07 TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216   07 TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496012   0   NOT APPLICABLE   34,331.84     96842   217   07 TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   0   NOT APPLICABLE   34,354.64     96842   218   07 TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07 TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04 SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   121   04 SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0                                                                                                              | 96832  | 139  | 06 TRAILER ZIEMAN EQUIPMENT 1150            | 1ZCT21S286ZP26968  | Q      | NOT APPLICABLE | 11,770.76       |      |
| 96832   141   06   TRAILER ZIEMAN EQUIPMENT 2327H   12CT31A286ZP26967   33,200   NOT APPLICABLE   26,560.33     96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   .00     96842   215   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A261496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005002   0   NOT APPLICABLE   82,639.91     9686                                                                                                                                                                        | 96832  | 140  | 06 TRAILER ZIEMAN EQUIPMENT 1150            | 1ZCT21S2X6ZP26969  | 9,999  | NOT APPLICABLE | 11,770.76       |      |
| 96842   214   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496019   0   NOT APPLICABLE   .00     96842   215   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A861496011   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED FOWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862                                                                                                                                                                                 | 96832  | 141  | 06 TRAILER ZIEMAN EQUIPMENT 2327H           | 1ZCT31A286ZP26967  | 33,200 | NOT APPLICABLE | 26,560.33       |      |
| 96842   215   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496020   0   NOT APPLICABLE   34,331.84     96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A861496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   807B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96                                                                                                                                                                        | 96842  | 214  | 07 TRAFFIC SIGNAL SYSTEM (1)                | 1C9B1A0A861496019  | 0      | NOT APPLICABLE | .00             |      |
| 96842   216   07   TRAFFIC SIGNAL SYSTEM (1)   1C9B1A0A861496021   0   NOT APPLICABLE   34,331.84     96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                         | 96842  | 215  | 07 TRAFFIC SIGNAL SYSTEM (1)                | 1C9B1A0A861496020  | 0      | NOT APPLICABLE | 34,331.84       |      |
| 96842   217   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A261496016   0   NOT APPLICABLE   34,354.64     96842   218   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496017   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                         | 96842  | 216  | 07 TRAFFIC SIGNAL SYSTEM (1)                | 1C9B1A0A861496021  | 0      | NOT APPLICABLE | 34,331.84       |      |
| 96842   21.8   07   TRAFFIC SIGNAL SYSTEM (2)   1CGB1A0A661496017   0   NOT APPLICABLE   34,354.64     96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GB1A0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005002   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                                                                                                                    | 96842  | 21.7 | 07 TRAFFIC SIGNAL SYSTEM (2)                | 1CGB1A0A261496016  | 0      | NOT APPLICABLE | 34,354,64       |      |
| 96842   219   07   TRAFFIC SIGNAL SYSTEM (2)   C9GBLA0A661496018   0   NOT APPLICABLE   34,354.64     96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96862   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005002   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96842  | 21.8 | 07 TRAFFIC SIGNAL SYSTEM (2)                | 1CGB1A0A661496017  | Û      | NOT APPLICABLE | 34,354.64       |      |
| 96862   120   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005001   0   NOT APPLICABLE   82,639.91     96662   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005002   0   NOT APPLICABLE   82,639.91     96662   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96842  | 219  | 07 TRAFFIC SIGNAL SYSTEM (2)                | C9GB1A0A661496018  | 0      | NOT APPLICABLE | 34.354.64       |      |
| 96862   121   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005002   0   NOT APPLICABLE   82,639.91     96862   122   04   SCAFFOLD-SUSPENDED POWER CLIMBER (3)   005003   0   NOT APPLICABLE   82,639.91     96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96862  | 120  | 04 SCAFFOLD-SUSPENDED POWER CLIMBER (3)     | 005001             | Ó      | NOT APPLICABLE | 82,639.91       |      |
| 96862     122     04     SCAFFOLD-SUSPENDED POWER CLIMBER (3)     005003     0     NOT APPLICABLE     82,639.91       96862     124     07     SCAFFOLD POWER CLIMBER PLATFORM     E07B3123/E07B3132     0     NOT APPLICABLE     33,998.72       96862     125     07     SCAFFOLD POWER CLIMBER PLATFORM     E07B3131/E07B3124     0     NOT APPLICABLE     33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96862  | 121  | 04 SCAFFOLD-SUSPENDED POWER CLIMBER (3)     | 005002             | Ó      | NOT APPLICABLE | 82,639.91       |      |
| 96862   124   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3123/E07B3132   0   NOT APPLICABLE   33,998.72     96862   125   07   SCAFFOLD POWER CLIMBER PLATFORM   E07B3131/E07B3124   0   NOT APPLICABLE   33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96862  | 122  | 04 SCAFFOLD-SUSPENDED POWER CLIMBER (3)     | 005003             | ő      | NOT APPLICABLE | 82,639,91       |      |
| 96862 125 07 SCAFFOLD POWER CLIMBER PLATFORM E07B3131/E07B3124 0 NOT APPLICABLE 33,998.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96862  | 124  | 07 SCAFFOLD POWER CLIMBER PLATFORM          | E07B3123/E07B3132  | . 0    | NOT APPLICABLE | 33,998,72       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96862  | 125  | 07 SCAFFOLD POWER CLIMBER PLATFORM          | E07B3131/E07B3124  | ő      | NOT APPLICABLE | 33,998,72       |      |
| KUKL SYDE TOPAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |                                             | ·                  | 2      |                | FUEL TYPE TOTAL |      |

ч.

HIGHWAYS DIVISION - OAHU DISTRICT E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

.

# PERIOD: 07/01/07 THRU 06/30/08

¢

|                |      |         |                                                |                                         |             |                      | ACQUIS               | ITION     |
|----------------|------|---------|------------------------------------------------|-----------------------------------------|-------------|----------------------|----------------------|-----------|
| EQUIPM         | lent | DESC    | RIPTION                                        | SERIAL NUMBER                           | . GVW       | FUEL                 | COST                 | DATE      |
| 91812          | 484  | 93 S    | EDAN: CHEV CAVALIER 4DSD                       | 1G1JC5441P7325708                       | 0           | GASOLINE             | 0.0 898 8            | 00/01/03  |
| 91812          | 485  | 93 S    | EDAN: CHEV CAVALIER 4DSD                       | 1G1JC5445P7336940                       | ő           | GASOLINE             | 8 888 00             | 08/01/93  |
| 91812          | 487  | 93 S    | EDAN: CHEV CAVALIER                            | 1G1JC5446P7339197                       | 0           | GASOLINE             | 0,000.00<br>0 900 AA | 00/01/03  |
| 91812          | 488  | 93 T.   | RUCK: GMC SUBURBAN 4WD                         | 1GKGK26K1P.7246057                      | 0           | CASOLINE<br>CASOLINE | 0,000.00             | 08/01/93  |
| 91812          | 489  | 94 T    | RUCK: CHEV S-10 PICKUP                         | 16008144188180629                       | n<br>N      | GASOLINE             | 10 224 40            | 06/01/93  |
| 91812          | 491  | 94 T    | RUCK: CHEV S-10 PICKUP                         | 16008144188178507                       | 0<br>N      | CASOLINE             | 10,554.48            | .06/01/94 |
| 91812          | 492  | 94 T    | RUCK: CHEV S-10 PICKUP/EXCH FOR 464)           | 16009144408178969                       | 0           | CAROLINE             | 10,555.40            | 06/01/94  |
| 91812          | 493  | 94 T    | RUCK: CHEV S-10 PICKUP                         | 10000144480178505                       | 0           | GASOLINE<br>CAROLINE | 10,554.49            | 06/01/94  |
| 91812          | 494  | 94 T    | RUCK: CHEV S-10 PICKUP                         | 100091444080176794                      | 0           | CASOLINE<br>CASOLINE | 10,553.40            | 06/01/94  |
| 91812          | 496  | 94 T    | RUCK: CHEVY S-10 PTCKIP                        | 10000144480100074                       | 0           | GAGODINE<br>GAGODINE | 10,553,40            | 06/01/94  |
| 91812          | 500  | 94 S    | EDAN: OLDSMOBILE CUTLASS CIERA(EYC 456)        | 10310555596207806                       | 0           | GASOLINE             | 10,553.40            | 06/01/94  |
| 91812          | 501  | 94 S    | TA WGN: OLDSMOBILE CUTLASS CRUISER             | 10370558386397800                       | 0           | GASUDINE<br>GAGOLINE | 13,027,13            | 06/01/94  |
| 91812          | 502  | 94 S    | TA WGN: OLDSMOBILE CUPLASS CRUISSR             | 1032030501386597822                     | 0           | GASOLINE             | 13,130.25            | 06/01/94  |
| 91812          | 503  | 94 8    | TA WON: OLDSMOBILE CUTLASS CRUISER             | 10340550402884                          | U           | GASOLINE             | 13,832.34            | 06/01/94  |
| 91812          | 504  | 94 5    | TA WON. OLDSMOBILE CUTLAGE CRUICER             | 103200000000000000000000000000000000000 | 0           | GASULINE             | 13,931.29            | 06/01/94  |
| 91812          | 505  | 94 5    | TA WON-OLDSMOBILE CUTLASS CRUISER              | 10370630166399216                       | U           | GASOLINS             | 13,931.29            | 06/01/94  |
| 91812          | 506  | 94 97   | TA NON, OLDSMOSING CUIMASS CRUISER             | 103AJ85M0R6399238                       | <u> </u>    | GASOLINE             | 13,906.30            | 06/01/94  |
| 91812          | 507  | 94 97   | TA NEW OLDSWORTHE CUTHASS CRUISER              | 103AJ85M6K6400845                       | U           | GASOLINE             | 13,906.30            | 06/01/94  |
| 91812          | 509  | 24 Q.   | RUCK, OUTINOI EM 1 (2 TON DIGUTE (DIGUTE (142) | 1G3AJ85M5R6400707                       | 0           | GASOLINE             | 13,931.29            | 06/01/94  |
| 91912          | 511  | 0/ 01   | RUCK: CHEVROLET 1/2 TON PICKUP(EXCH 449        | 1GCDC14H1RZ217659                       | 0           | GASOLINE             | 13,667.77            | 06/01/94  |
| 01012          | 512  | 04 11   | NUCKI CHEVROLET 1/2 TON PICKUP                 | 1GCDC14H8RZ217738                       | 0           | GASOLINE             | 13,666.77            | 06/01/94  |
| 01010          | 514  | 94 V/   | AN: GAU SAFARI                                 | 1GKDM15Z1RB542846                       | 0           | GASOLINE             | 15,072.96            | 08/01/94  |
| 21012<br>01040 | 513  | 94 17   | AN: GMC SPORT RALLY                            | 1GKEG25H3RF532871                       | 0           | GASOLINE             | 16,144.84            | 06/01/94  |
| 91014          | 514  | 94 5    | TATION WAGON: CHEVROLET CAVALIER               | 1G1JC8445R7317633                       | 0           | GASOLINE             | 11,859.15            | 06/01/94  |
| 31814          | 211  | 94 T    | RUCK; CHEV. PICKUP W/ SKID TRAILER             | 1GCGC33NORJ408472                       | 0           | GASOLINE             | 22,682.00            | 11/01/94  |
| 91915          | 218  | 94 T    | RUCK: GMC SIERRA CLUB COUPE                    | 1GTHK39F4RE503732                       | 0           | GASOLINE             | 143,457.00           | 09/01/95  |
| 91917          | 519  | 85 19   | RUCK: CHEV 4WD P/U-MILITARY                    | 1GCGD34J2FF434840                       | 0           | GASOLINE             | 1,600.00             | 08/01/96  |
| A1917          | 520  | 85 TI   | RUCK: CHEV 4ND P/U-MILITARY                    | 1GCHD34J0FF444366                       | 0           | GASOLINE             | 1,600.00             | 08/01/96  |
| 91815          | 521  | 84 TI   | RUCK: CREV. PICKUP                             | 1GCHD34J6EF357800                       | 0           | GASOLINE             | 1,600.00             |           |
| 91913          | 528  | 97 TI   | RUCK: CHEV S-10 EXT CAB PICKUP CHEYENNE        | 1GCCS19X1VK179464                       | 0           | GASOLINE             | 17,015.61            | 04/01/97  |
| 91812          | 529  | 97 TI   | RUCK: CHEV S-10 EXT CAB PICKUP CHEYENNE        | 1GCCS19X2VK179571                       | 0           | GASOLINE             | 17,015.61            | 04/01/97  |
| 91815          | 530  | 97 TI   | WCK: CHEV S-10 EXT CAB PICKUP CHEYENNE         | 1GCCS19X0VK179665                       | 0           | GASOLINE             | 17,015.61            | 04/01/97  |
| 91813          | 531  | 97 TF   | RUCK: CHEV S-10 EXT CAB PICKUP CHEYENNE        | 1GCCS19X4VK179622                       | 0           | GASOLINE             | 17,171.86            | 04/01/97  |
| 91812          | 532  | 97 TE   | RUCK: CHEV S-10 PICK UP                        | 1GCCS14X7V8169705                       | 0           | GASOLINE             | 14,648.95            | 05/01/97  |
| 91812          | 533  | · 97 TH | RUCK: CHEV S-10 PICK UP                        | 1GCCS14X3V8170558                       | 0           | GASOLINE             | 14,648.95            | 05/01/97  |
| 91812          | 534  | 97 TH   | NUCK: CHEV S-10 PICKUP                         | 1GCCS14X9V8169690                       | 0           | GASOLINE             | 14,648.95            | 05/01/97  |
| 91812          | 535  | 97 TH   | RUCK: CHEV S-10 PICKUP                         | 1GCCS14X2V8169854                       | 0           | GASOLINE             | 14,648.95            | 05/01/97  |
| 91812          | 536  | 97 TF   | NUCK: CHEV S-10 PICKUP                         | 1GCCS14X7V8168862                       | 0           | GASOLINE             | 14,648.95            | 05/01/97  |
| 91812          | 538  | 97 TF   | RUCK: CHEV 1/2 TON PICKUP                      | 1GCEC14M0V2216420                       | 0           | GASOLINE             | 19,269.78            | 06/01/97  |
| 91812          | 539  | 85 TF   | RUCK: CHEVROLET PICK UP                        | 1GCGD34J2FF425426                       | Ð           | GASOLINE             | 1,600.00             | 04/01/97  |
| 91812          | 540  | 85 TF   | RUCK: CHEVROLET PICKUP                         | 1GCGD34J5FF425498                       | 0           | GASOLINE             | 1,600,00             | 04/01/97  |
| 91812          | 541  | 85 TF   | RUCK: CHEVROLET PICKUP                         | 1GCGD34JXFF426761                       | 0           | GASOLINE             | 1,600,00             | 04/01/97  |
| 91812          | 542  | 86 TF   | WCK: CHEV 4WD P/U- MILITARY                    | 1GCGD34J0GF362375                       | 0           | GASOLINE             | 1 600.00             | 06/01/97  |
| 91812          | 544  | 97 VA   | N: FORD ECONOLINE                              | 1FTHE242XVH809473                       | 0           | GASOLINE             | 20 000 00            | 06/01/97  |
| 91812          | 545  | 97 VA   | N: FORD ECONOLINE                              | 1FTHE2421VH809474                       | ñ           | GASOLINE             | 20 000 00            | 06/01/97  |
| 91812          | 546  | 97 V7   | N: FORD ECONOLINE                              | 1FTHE2423VHB09475                       | ñ           | GASOLINE             | 20 000 00            | 06/01/07  |
| 91812          | 547  | 96 TS   | RUCK: TOYOTA PICK UP                           | 4TAWN72NXT7103533                       | 3.670       | GASOLINE             | 15 171 04            | 06/01/9/  |
| 91812          | 548  | 96 TR   | UCK; TOYOTA PICK UP                            | 4TAWN72NXTZ118386                       | 3,670       | GASOLINE             | 15 171 04            | 06/01/04  |
| 91812          | 549  | 92 ST   | ATION WAGON TOYOTA 4DR LAND CRIVISER           | JT3FJB0W3N0044046                       | 4.700       | GASOLINE             | AA<br>AA             | 06/01/90  |
| 91812          | 553  | 98 BL   | AZER CHEVROLET 4 DR                            | 1GNCS13WXWK245714                       | ·x,,νυ<br>Δ | GASOLINE             | 22 0E1 02            | 00/01/02  |
| 91812          | 554  | 92 WA   | GON: FORD EXPLORER STATION WAGON               | 1 501043221 001059197                   | 0           | CASCHINE             | 67,107,64<br>^^      | 00/01/98  |
| 91812          | 556  | 98 SF   | DAN: CHEVROLET CAVALIER 4 DR                   | 361.70524386962406                      | л           | GASOLIME             | 17 007 75            | 06/01/92  |
|                |      |         |                                                |                                         |             | 010001110            |                      | 00/01/30  |

.

|        |      |                                            |                                               |        |                      | ACQUIS            | 1111ON~  |
|--------|------|--------------------------------------------|-----------------------------------------------|--------|----------------------|-------------------|----------|
| EQUIP  | 4ENT | DESCRIPTION                                | SERIAL NUMBER                                 | . GVW  | FUEL                 | COST              | DATE     |
| 91812  | 564  | 95 SEDAN: CHEVROLET CORSICA 4 DR.          | 1611.055872971838                             | ٥      | CA COLTAIR           | 6 100 00          | 06/01/05 |
| 91812  | 565  | 95 SEDAN: CHEVROLET CORSICA 4 DR.          | 1G11055AM68Y273323                            | ŏ      | GASOLINE             | 6 100.00          | 06/01/95 |
| 91812  | 566  | 95 SEDAN: CHEVROLET CORSICA 4 DR.          | 1611055M4SY284594                             | ő      | GABOLINE             | 6 100 00          | 06/01/95 |
| 91812  | 567  | 95 SEDAN: CHEVROLET CAPRICE 4DR.           | 1G1 BL 52W08B1 63723                          | õ      | CASOLINE<br>CASOLINE | 11 000.00         | 06/01/95 |
| 91812  | 569  | 98 TRUCK: FORD RANGER                      | 1 FTZR1504WPA05345                            | ő      | GASOLINE             | 11,900.00         | 06/01/99 |
| 91812  | 570  | 98 TRUCK: FORD RANGER                      | 1 FT2R1 5118WP3 05347                         | ő      | CASOLINE             | .00               | 00/01/90 |
| 91812  | 571  | 98 TRUCK: FORD MPVH EXPLORER               | 1 FM21134 E9WIIA20005                         | 0      | GASOLINE             | .00               | 06/01/90 |
| 91812  | 575  | 98 TRUCK: FORD RANGER PICK UP              | 1 KT2R1 5116WPA05346                          | 0      | GASOLINE             | .00               | 06/01/98 |
| 91812  | 578  | 95 SEDAN: FORD TAURUS 4 DR.                | 1 FAL 95211 \$2230476                         | ŏ      | GAGOLINE             | 6 500 00          | 06/01/95 |
| 91812  | 579  | 00 VAN: CHEVROLET ASTRO                    | 1GNDM1 9W1 YB181166                           | ő      | GAGOLINE<br>GAGOLINE | 109 100 00        | 06/01/00 |
| 91812  | 580  | 00 WAGON: JEEP CHEROKEE MPVH 4 DR.         | 1.J4FT2852YT208971                            | 'n     | GAGODINE<br>GAGODINE | 25 030 05         | 06/01/00 |
| 91812  | 581  | 00 SEDAN: CHEVROLET 4 DR. MALIBU           | SN1G1ND52.T9Y6256443                          | ő      | GASOLINE<br>GASOLINE | 17 /05 30         | 06/01/00 |
| 91812  | 582  | 00 TRUCK: GMC S-15 PU                      | 167071988828267907                            | 0      | CAROLINE .           | 1 00              | 06/01/00 |
| 91812  | 583  | 00 TRUCK; GMC 2-15 PU                      | 1010110102070039                              | 0      | GASOLINE<br>GASOLINE | 1.00              | 06/01/00 |
| 91812  | 584  | 93 TRUCK: DODGE PICKUP D250 RAM            | 187.TE26X5D8257238                            | 0      | GAGODINE<br>GAGODINE | E 000 00          | 06/01/00 |
| 91812  | 595  | 01 SEDAN: CHEVROLET 4 DOOR IMPALA          | 20102552919344274                             | A 473  | GABODINE<br>GABODINE | 31 035 00         | 06/01/93 |
| 91812  | 610  | 95 SEDAN: FORD TAURIUS 4 DR                | 1 PAT.DE04Y030476                             | 3 330  | GASODINS<br>GASODINS | 21,025.00         | 06/01/01 |
| 91812  | 637  | 04 TRUCK DODGE DAKOTA ADR                  | 107902280045710546                            | 022,6  | GASOGINE<br>GAGOTINE | .00               | 06/01/95 |
| 91812  | 655  | 05 TRICK DODGE RISAA DICENTE               | 1070316306640716546                           |        | GASODINE             | 22,859.23         | 12/09/04 |
| 91812  | 674  | 05 SUVI FORD SXPLOPER                      | 1 PM//ICOVACID9/CCOD                          | 0      | GASOLINE             | 23,352.98         | 09/29/05 |
| 91812  | 676  | 05 TRUCK FORD PANGER DI                    | 1 20120 400600 000000000000000000000000000000 | 0      | GASOLINE             | 23,176.93         | 12/30/05 |
| 91812  | 678  | 02 SEDAN. OLDSMORILE ALERO                 | 1F11K44025FA01711                             | 0      | GASOLINE             | 21,195.80         | 12/30/05 |
| 91812  | 679  | 02 SEDAN, OLDEMOBILE MEERO                 | 103101521820255380                            | 0      | GASULINE             | 7,150.00          | 03/13/07 |
| 91812  | 680  | 02 SEDAN, OLDSHOBILE ALERO                 | 1G3NL52F52C244403                             | 0      | GASOLINE             | 7,150.00          | 03/13/07 |
| 91812  | 691  | OF SHE FORD FURDING ANA                    | LG3NL52F92C244324                             | 0      | GASOLINE             | 7,150.00          | 03/13/07 |
| 91.812 | 692  | AC SUM FORD EXPEDITION ALS 4X4             | 1FMPU14506LA83463                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 01012  | 603  | AC SHU FORD EXPEDITION ALS 4X4             | 1FMPU14596LA83462                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 91912  | 604  | OC SUV FORD EXPEDITION XLS 4X4             | 1FMPU14576LA83461                             | 0      | GASOLINE             | 37,117.26         | 01/05/07 |
| 01012  | COF  | OG SUV FORD EXPEDITION XLS 4X4             | 1FMPU14596LA83459                             | 0      | GASOLINE             | 37,117.26         | 01/05/07 |
| 01012  | 606  | 06 SUV FORD EXPEDITION XLS 4X4             | 1FMPU14526LA83464                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 01010  | 6070 | AS ON FORD EXPEDITION XLS 4X4              | 1FMPU14576LA83458                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 91014  | 697  | 06 SUV FORD EXPEDITION XLS 4X4             | 1FMPU14556LA83460                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 91012  | 698  | 06 SUV FORD EXPEDITION XLS 4X4             | 1FMPU14546LA83465                             | 0      | GASOLINE             | 37,117.26         | 01/22/07 |
| 91010  | 707  | 08 TRUCK 07 FISO W/LIFT GATE               | 1FTRF12VX7KD42204                             | 0      | GASOLINE             | 40,702.47         | 03/14/08 |
| 91812  | AT0  | 08 SUV FORD EXPEDITION 1FMPK16558LA08808   | 1FMFK16558LA08808                             | 0      | GASOLINE             | <b>41,086.7</b> 6 | 04/21/08 |
| 91812  | 712  | 08 SUV 08 FORD EXPLORER 4X4                | 1FMEU73E08UA15852                             | 0      | GASOLINE             | 30,756.92         | 05/12/08 |
| 91812  | 714  | 08 SUV FORD EXPLORER SPORT UTILITY 4X4     | 1FMEU73E98UA15851                             | 0      | GASOLINE             | 30,756.42         | 05/28/08 |
| 91822  | 163  | 81 FORKLIFT: TOYOTA                        | 2FG3020424                                    | 0      | GASOLINE             | 17,115.00         | 06/01/81 |
| 91822  | 196  | 92 FORKLIFT: YALE FORKLIFT TRUCK           | N523949                                       | 0      | GASOLINE             | 20,046.00         | 09/01/92 |
| 91822  | 220  | 94 TRUCK: GMC                              | 1GDM7H1J8RJ502423                             | 32,000 | GASOLINE             | 80,861.00         | 09/01/95 |
| 91822  | 221  | 94 TRUCK: GMC                              | 1GDM7H1J3RJ501258                             | 32,000 | GASOLINE             | 80,861.00         | 09/01/95 |
| 91822  | 225  | 77 FORKLIFT: ALIS CHALMERS ACC-40B PS      | 102882                                        | 0      | GASOLINE             | 900.00            | 06/01/77 |
| 91822  | 229  | 77 FORKLIFT: ALLISCHALMERS ACC-40BPS       | 102871                                        | 0      | GASOLINE             | 1,500.00          | 06/01/77 |
| 91842  | 169  | 84 KELLY-CRESWELL STRIPING MACHINE         | 3623                                          | 0      | GASOLINE             | 9,994.40          | 11/01/84 |
| 91842  | 172  | 86 MB STRIPING MACHINE                     | 3-0584                                        | 0 .    | GASOLINE             | 2,784.09          | 06/01/86 |
| 91842  | 196  | 90 MOWER: CUBCADET POWER                   | 000189371                                     | 0      | GASOLINE             | 3,593.76          | 08/01/90 |
| 91842  | 202  | 91 MOWER: SNAPPER POWER                    | 05077521                                      | 0      | GASOLINE             | 2,698,80          | 06/01/91 |
| 91842  | 214  | 94 MACHINE STRIPING KELLY CRESNELL         | KCB42T                                        | 0      | GASOLINE             | 19,344.11         | 02/01/94 |
| 91842  | 229  | 96 GENERATOR, HONDA GA-6HZ                 | 5131560                                       | 0      | GASOLINE             | 2,945.00          | 12/01/96 |
| 91842  | 235  | 96 MIXER, BETONIERA WORKMAN 250 CONCRETE   | 123789                                        | 0      | GASOLINE             | 2,442,96          | 01/01/9A |
| 91842  | 239  | 98 STRIPING MACHINE KELLY CRESWELL HDCT-2  | 8007                                          | 0      | GASOLINE             | 17.290.70         | 06/01/98 |
| 91842  | 263  | 99 STRIPING MACHINE: MB W/POWER DRIVE 5-12 | 399041271                                     | 0      | GASOLINE             | 11,467,00         | 06/01/99 |

----ACQUISITION-----

# PERIOD: 07/01/07 THRU 06/30/08

۲

HIGHWAYS DIVISION - OAHU DISTRICT E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

.

HIGHWAYS DIVISION - OAHU DISTRICT E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

#### PERIOD: 07/01/07 THRU 06/30/08

4

••

|        |       |                                             |                   | •      |          | ACQUISI        | TION     |
|--------|-------|---------------------------------------------|-------------------|--------|----------|----------------|----------|
| EQUIPN | ENT   | DESCRIPTION                                 | SERIAL NUMBER     | GVW    | FUEL     | COST           | DATE     |
|        |       |                                             |                   |        |          |                |          |
| 91842  | 276   | 03 TRAILER: SPECTRUM W/CHEM SPRAYER TANK    | 159ES16163H364226 | Ø      | GASOLINE | .00            | 06/01/97 |
| 91842  | 277   | 00 STRIPING MACHINE: KELLY CRESNELL HDCT    | SN8173            | 0      | GASOLINE | 13,956.72      | 06/01/97 |
| 91842  | 278   | 00 STRIPING MACHINE: KELLY CRESWELL HDCT    | 8174              | 0      | GASOLINE | 13,956.72      | 06/01/97 |
| 91842  | 300   | 03 STRIPPING MACHINE: KELLY CRESWELL B4-2T  | 8377              | 0      | GASOLINE | 29,725.14      | 10/30/03 |
| 91842  | 312   | 06 WELDER LINCOLN 10KW K2468-1              | 159E514146H364223 | 0      | GASOLINE | 31,340.00      | 05/01/07 |
| 91842  | 314   | 06 GENERATOR HONDA EB70001                  | EAKJ1002570       | 0      | GASOLINE | 6,495.00       | 02/16/07 |
| 91842  | 316   | 06 ERADICATOR ROBIN MOD 20H W/VACUUM        |                   | 0      | GASOLINE | 9,979.98       | 02/16/07 |
| 91842  | 317   | 06 WELDER LINCOLN 06 K2468-1                | 9ES14166H364224   | 0      | GASOLINE | 31,340.00      | 05/01/07 |
| 91842  | 318   | 06 GENERATOR BRIGGS & STRATTON MOD 030242   | 1013892078        | 0      | GASOLINE | 2,548.08       | 02/16/07 |
| 91842  | 320   | 08 SPRAYER 06 TRAILER MTD MCGREGOR EQMR-300 | RS335707          | 0      | GASOLINE | 25,812.33      | 09/07/07 |
| 91862  | 106   | 87 ADVANCE INDUSTRIAL SWEEPER               | 215714            | 2,960  | GASOLINE | 18,705.15      | 07/01/87 |
| 91862  | 111   | 99 VACUUM: TENNANT LITTER MACHINE           | 4300-1132         | 2,600  | GASOLINE | 29,421.21      | 04/01/99 |
| 91862  | 112   | 00 TRUCK: TENNANT LITTER MACH (VACUUM) ATLV | 4300-1437         | Q      | GASOLINE | 26,562.33      | 03/31/00 |
| 91862  | 119   | 06 FORKLIFT KOMATSU FG30HT-14               | 204327A           | 0      | GASOLINE | 30,728.97      | 02/13/07 |
|        |       |                                             |                   |        |          | FUEL TYPE TOTA | പ്       |
|        |       |                                             |                   |        |          |                |          |
| 91812  | 522   | 97 TRUCK: CHEV CREW CAB PICK UP CHEYENNE    | lGCGC33F0VF028201 | 0      | DIESEL   | 27,121.70      | 06/01/97 |
| 91812  | 523   | 97 TRUCK: CHEV CREWCAB PICKUP               | 1GCGC33F4VF028153 | 0      | DIESEL   | 27,121.70      | 04/01/97 |
| 91812  | 524   | 97 TRUCK: CHEV CREWCAB PICKUP               | 1GCGC33F8VF028205 | 0      | DIESEL   | 27,121.70      | 04/01/97 |
| 91812  | 525   | 97 TRUCK: CHEV PICKUP CHEYENNE              | 1GCGC33F0VF027212 | 0      | DIESEL   | 27,121.70      | 04/01/97 |
| 91812  | 526   | 97 TRUCK: CHEV CREWCAB PICKUP CHEYENNE      | 1GCGC33F7VF027398 | 0      | DIESEL   | 27,121.70      | 04/01/97 |
| 91812  | 527   | 97 TRUCK: CHEV CREWCAB PICKUP               | 1GCGC33F8VF027488 | 0      | DIESEL   | 26,600.88      | 04/01/97 |
| 91812  | 543   | 97 VAN: CHEVROLET W/TELESCOPIC AERIAL LIFT  | 1GCHG39F0V1053533 | 9,500  | DIESEL   | 50,770.80      | 06/01/97 |
| 91812  | 550   | 98 TRUCK: CHEVROLET CREW CAB PICKUP         | 1GCGC33F5WF061065 | 0      | DIESEL   | 31,621.33      | 06/01/98 |
| 91812  | 551   | 98 TRUCK: CHEVROLET CREW CAB PICKUP         | 1GCGC33F5WF061549 | 0      | DIESEL   | 31,828.68      | 06/01/98 |
| 91812  | 552   | 98 TRUCK: CHEVROLET CREW CAB PICK UP        | 1GCGC33F0WF061927 | 0      | DIESEL   | 31,829.66      | 06/01/98 |
| 91812  | 555   | 99 TRUCK: GMC UTILITY CREW CAB              | lGDHK33FOXF006639 | 10,000 | DIESEL   | 76,347.44      | 06/01/99 |
| 91812  | 557   | 99 TRUCK: CHEVROLET SUBURBAN 4X4            | 3GNGK26F8XG206132 | 0      | DIESEL   | 33,848.74      | 06/01/99 |
| 91812  | 558   | 99 TRUCK: GMC SIERRA CREW CAB               | 1GTHC33F9XF012988 | 0      | DIESEL   | 41,843.36      | 06/01/99 |
| 91812  | 559   | 99 TRUCK: GMC SIERRA CREW CAB               | 1GTHC33F9XF013235 | 0      | DIESEL   | 41,843.36      | 06/01/99 |
| 91812  | 560   | 99 TRUCK: CHEVROLET FLEETSIDE CREWCAB P/U   | 1GCGC33F7XF060677 | 0      | DIESEL   | 32,011.25      | 06/01/99 |
| 91812  | 561   | 99 TRUCK: CHEVROLET FLEETSIDE CREWCAB P/U   | 1GCGC33F3XF059719 | 0      | DIESEL   | 32,115.42      | 06/01/99 |
| 91812  | 562   | 99 TRUCK: GMC SIERRA CREW CAB               | 1GTHC33F1XF010491 | 10,000 | DIESEL   | 41,843.36      | 06/01/99 |
| 91812  | 577 · | 00 TRUCK, GMC UTILITY BODY                  | 1GDHC34F3YF415392 | 10,000 | DIESEL   | 45,694.48      | 06/01/00 |
| 91812  | 585   | 00 TRUCK: GMC 3500 SIERRA CREWCAB PICKUP    | 1GTGC33FOYF496692 | 9,000  | DIESEL   | 33,906.03      | 06/01/00 |
| 91812  | 586   | 01 TRUCK: GMC 2500HD P/U                    | lGTHC24101E216685 | 9,200  | DIESEL   | 33,246.44      | 06/01/01 |
| 91812  | 587   | 01 TRUCK: GMC 2500 HD P/U W/ARROW BOARD     | 1GTHC24111E216114 | 9,200  | DIESEL   | 35,423.92      | 06/01/01 |
| 91812  | 588   | 01 TRUCK: GMC 2500 HD P/U W/LIFT GATE       | 1GTHC24171E218322 | 9,200  | DIESEL   | 35,605.21      | 06/01/01 |
| 91812  | 594   | 01 TRUCK: GMC STAKE W/LIFT GATE             | 1GDJC34171F141030 | 11,400 | DIESEL   | 41,569.91      | 06/01/01 |
| 91812  | 596   | 01 TRUCK: FORD PICKUP W/EXT. CAB ONE TON    | 1FTWX32F41EC51441 | 11,000 | DIESEL   | 32,714.45      | 06/01/01 |
| 91812  | 597   | 01 TRUCK: FORD PICKUP W/EXT CAB ONE TON     | 1FTWX32F61EC51442 | 11,000 | DIESEL   | 32,714.45      | 06/01/01 |
| 91812  | 598   | 01 TRUCK: FORD PICKUP W/EXT CAB ONE TON     | 1FTWX32F81EC51443 | 11,000 | DIESEL   | 32,714.45      | 06/01/01 |
| 91812  | 599   | 01 TRUCK: FORD PICKUP W/.EXT CAB ONE TON    | 1FTWX32F41EC51444 | 11,000 | DIESEL   | 32,714,45      | 06/01/01 |
| 91812  | 600   | 01 TRUCK: FORD PICKUP W/EXT CAB ONE TON     | 1FTWX32F11EC51445 | 11,000 | DIESEL   | 32,714.25      | 06/01/01 |
| 91812  | 601   | 01 TRUCK: FORD P/U ONE TON W/EXTENDED CAB   | 1FTWX32F21EC51440 | 11,000 | DIESEL   | 32,714.45      | 06/01/01 |
| 91812  | 602   | 01 TRUCK: FORD ONE TON P/U W/EXTENDED CAB   | 1FTWX32F31EC51446 | 11,000 | DIESEL   | 32,610.44      | 06/01/01 |
| 91812  | 603   | 01 TRUCK: FORD P/U ONE TON W/EXTENDED CAB   | 1FTWX32F51EC51447 | 11,000 | DIESEL   | 32,610.44      | 06/01/01 |
| 91812  | 605   | 01 TRUCK: FORD CREW CAB PICK UP             | 1FTWW32F51EC84032 | 11,000 | DIESEL   | 35,510.40      | 06/01/01 |
| 91812  | 606   | 01 TRUCK: GMC PICK UP                       | 1GTHC24161E316693 | 9,200  | DIESEL   | 33,246,44      | 06/01/01 |
| 91812  | 607   | 01 TRUCK: FORD ONE TON UTILITY PICKUP       | 1FDWF32F51EC47610 | 11,000 | DIESEL   | 35,349.81      | 06/01/01 |
| 91812  | 608   | 01 TRUCK: FORD ONE TON UTILITY PICKUP       | 1FDWF32F91BC47609 | 11,000 | DIESEL   | 35,349.81      | 06/01/01 |

HIGHWAYS DIVISION - OAHU DISTRICT E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

|                |     |                                             |                                         |                  |                  | ACQUIS:                | TION     |
|----------------|-----|---------------------------------------------|-----------------------------------------|------------------|------------------|------------------------|----------|
| EQUIPM         | ENT | DESCRIPTION                                 | SERIAL NUMBER                           | GVW              | FUEL             | COST                   | DATE     |
| 91812          | 609 | 01 VAN: CHEVROLET FULL SIZE MODEL 3500      | 1GANG35F611235570                       | 9,500            | DIESEL           | 30.117.00              | 06/01/01 |
| 91812          | 611 | 01 TRUCK: GMC W/AERIAL                      | 3GDKC34F41M115307                       | 15,000           | DIESEL           | 98.393.22              | 03/27/02 |
| 91812          | 613 | 02 TRUCK: FORD ONE TON PU N/EXT. CAB        | 1FTWX32FX2EC50960                       | 11 500           | DIESEL           | 32 736 18              | 08/23/02 |
| 91812          | 614 | 02 TRUCK: FORD ONE TON PU W/EXT, CAB        | 1FTWX32F12EC50961                       | 11,500           | DIESEL           | 32,736,18              | 08/23/02 |
| 91812          | 615 | 02 TRUCK; FORD ONE TON PU W/EXT. CAB        | 1FTWX32F32EC50962                       | 11,500           | DIESEL           | 32,736,18              | 08/23/02 |
| 91812          | 616 | 02 TRUCK: FORD ONE TON PU W/EXT. CAB        | 1FTWX32F52EC50963                       | 11 500           | DIESEL           | 32,736,18              | 08/23/02 |
| 91812          | 617 | 02 TRUCK: FORD ONE TON PU W/EXT. CAB        | 1FTWX32F72EC50964                       | 11.500           | DIESEL           | 32,736,18              | 08/23/02 |
| 91812          | 620 | 02 VAN: CHEV 3500 FULL SIZE                 | 1GNHG35F721243001                       | 9.500            | DIESEL           | 27.785.00              | 09/12/02 |
| 91812          | 621 | 02 VAN: CHEV. 3500 15 PASSENGER             | 1GAHG39F651243664                       | 9,500            | DIESEL           | 28,925,00              | 09/12/02 |
| 91812          | 622 | 03 TRUCK: FORD 4DR EXCURSION MPVH           | 1FMSU41P03ED13424                       | 7.650            | DIESEL           | 39,993,77              | 12/08/03 |
| 91812          | 623 | 03 TRUCK: FORD EXCURSION 4 DR MPVH          | 1FMSU41F43ED13426                       | 7,650            | DIESEL           | 39,993,77              | 12/08/03 |
| 91812          | 624 | 03 TRUCK: FORD 4DR EXCURSION MPVH           | 1FMSU41P63ED13427                       | 7.650            | DIESEL           | 39,993,77              | 12/08/03 |
| 91812          | 625 | 03 TRUCK: FORD 350 PICKUP W/CREW CAB        | 18790329538035668                       | 11,500           | DIESEL           | 36.186.18              | 12/08/03 |
| 91812          | 629 | 04 TRUCK: FORD EXCURSION 4X4 SPORT HTTL.    | 1FMSH41P94ED77883                       | 12,200           | DIESEL           | 40,060,64              | 11/18/04 |
| 91812          | 630 | 04 TRUCK: CHEV CREWCAB E350 4X2             | 18700320948029681                       | ň                | DIESEL           | 12,609,15              | 11/16/04 |
| 91812          | 631 | D4 TRUCK: FORD F350 CREW CAB                | 1 PTWW32P04ED29682                      | ő                | DIESEL           | 32,609,15              | 11/16/04 |
| 91812          | 632 | 04 TRUCK: FORD 4X2 CREW CAB                 | 1FTWW32P24ED29683                       | ő                | DIESEL           | 32,609.14              | 11/16/04 |
| 91.812         | 633 | 04 TRUCK: FORD F350 CREWCAR                 | 1875830848037126                        | ő                | DIRGRI.          | 30.849.43              | 11/16/04 |
| 91812          | 646 | 64 TRUCK, FORD \$350 DICKUP                 | 1 RTWR32084880872                       | 6 640            | DIRGET.          | 29 107 05              | 00/10/05 |
| 91812          | 647 | 04 TRICK, FORD F350 PICKUP                  | 1 FTSF31 D64EE09701                     | 0,040            | DIESEL           | 31 165 37              | 00/00/05 |
| 91.812         | 648 | 05 VAN. RORD E350                           | 1 FMNE31 04 5HA02083                    | ő                | DIEGEL           | 29 407 10              | 09/17/05 |
| 91.812         | 649 | 05 VAN, BORD E350                           | TEMNEST DESKAG2005                      | ő                | DIRCEI.          | 29 407 11              | 00/17/05 |
| 91812          | 662 | 05 TRUCK, FORD PU                           | 1 5795200465319555                      | ő                | DIFORT.          | 20,207.11              | 12/29/05 |
| 91812          | 663 | 05 TRUCK. FORD PU                           | TETOPSOLOGERALSSS                       | ő                | DIFERT.          | 29,770.77              | 12/29/05 |
| 91812          | 664 | AS TRUCK, FORD DU                           | 1579530086019550                        | 0                | DIEGEL           | 29,770.77              | 12/20/05 |
| 91812          | 665 | 06 TRUCK. FORD PU                           | 1FTSF3DUX6FA1955                        | 0                | DIEGEL           | 29,770.77              | 12/29/05 |
| 91812          | 666 | OF TRUCK, FORD BU                           | IFTSF20116FA19555                       | 0                | DIROND           | 20 770 77              | 12/29/05 |
| 91812          | 667 | AG TRUCK, FORD PU                           | 1010000000000000000                     | 0                | DIESEL           | 29,770.77              | 12/29/05 |
| 91812          | 668 | 06 TRUCK FORD DU                            | 1 FTGE3 (DY 6EA1 956)                   | 0                | DIFERT.          | 29 770 74              | 12/20/05 |
| 91812          | 669 | 06 TRUCK FORD DI F350                       | 1 FT8F30F16F19562                       | ő                | DISCED           | 29,770.73              | 12/30/05 |
| 91812          | 670 | 06 TRUCK, FORD BU                           | 1 579830836819562                       | 0                | DIFERT.          | 29,770.77              | 12/29/05 |
| 91812          | 671 | DE TRUCK, FORD RU                           | 1 FT9P3 DECP519564                      | 0                | DIESED<br>DIESED | 20,770.77              | 12/25/05 |
| 91812          | 672 | 06 TRUCK, FORD DU                           | 1 FTOFSOESOEALSSO                       | 0                | DIEGEL           | 20,770,77              | 10/20/05 |
| 91912          | 672 | OF TRUCK. BORD DU                           | 1FTGF30P76EAL9505                       | 0                | DIEGED           | 20,770,77              | 12/25/05 |
| 01017          | 677 | 0.6 TRUCK FORD F260 DI W/LIPT CATE          | 1 20023027326023                        | 0                | DIDDEL           | 45,770.77              | 12/29/05 |
| 91812          | 702 | OF TRUCK FORD OF F350 PU MULTER GALE        | 1 57788305665062                        | 0                | DIEGED           | 30,700.54              | 04/23/08 |
| 91912          | 703 | OF TRUCK FORD BY FOUL                       | 1 ETWERADCETDC0017                      | 0                | DIEGEL           | 30,931.75              | 04/21/07 |
| 91812          | 704 | AS TRUCK FORD P350 PU                       | 18708308568069917                       | 0                |                  | 30,331,75              | 04/19/07 |
| 01010          | 705 | AT TRUCK BORD BE FORD DI                    | THE SUPPOPER OF OF                      | 0                | DIGODI           | 30,931.75              | 04/15/07 |
| 01010          | 705 | OF TRUCK FORD ON F350 F0                    | 100000000000000000000000000000000000000 | 0                | DIRCRI           | 30,931.75              | 04/13/07 |
| 01077          | 176 | A TOUR FORD FOOD ADDING INTERV              | TEDMESUEGGEG12525                       | 25 000           |                  | 33,003.34              | 01/01/01 |
| 01000          | 177 | OF INDER, THERMARY ONAL PLACED              |                                         | 35,000           | DIRCEL           | /5,044.10              | 01/01/04 |
| 01070          | 100 | AP BEIGH, WIERWALLAND FINIDED               |                                         | 33,000           | DIRORD           | 40,441.40              | 01/01/88 |
| 21022          | 101 | 64 RDACTOR MERIOPHI RANDEN PDUCK            | LELWI / HEORVA04445                     | 23,100           | DIBOBI           | 54,587.00              | 02/01/08 |
| 21022          | 100 | 69 IRACION: RENNORIA TANDEN IRUCA           | 1/mon/25/5/65/2410/                     | 50,000           | DIEGEL           | 71,700.70              | 05/01/89 |
| 21044<br>01027 | 104 | DO BOUCK, INTE STARE TRUCK W/ HID THISGALE  | 17003 CDI 37 U220C25                    | 24,160           | DIROPI           | 30,973.91              | 09/01/89 |
| 01000          | 100 | ST TRUCK, INTERNATIONAL 2-1/2 CI DUMP TRUCK |                                         | 24,10V           | DIEGOI           | 20,940,69<br>20,940,59 | 03/01/89 |
| 91044<br>91033 | 100 | AT THOOR MARY IN OF DUMP TRUCK              | 1 MON VO A// 380400 23 20               | 20,24V<br>EE E40 | DIBOBU<br>DIRCRI | C0 340 14              | 01/01/91 |
| 01022          | 102 | DI MOURT MACK IV CI DUMP IRUCK              | 100KCU1 TVM 1111 CP2                    | 36,340           | DIRORI           | 00,040,14              | 11/01/01 |
| 91822          | 193 | DI TRUCKI CHEV KODIAK 2 1/2 CI DUMP         | TODKOUTOVHOTTT0/2                       | 24,200           | DIRGEL           | 30,143.19              | 11/01/01 |
| 01010          | 100 | DI TRUCKI CHEV KODIAK 2 1/2 CI DUMP         | TODVORTO MOTITI / 32                    | 24,200           | DIRGER           | 35,004.04              | 11/01/91 |
| 21022          | 122 | FI INDERT CHEV KUDIAK 2 1/2 CY DUMP         | TORKOUTO 3WO 111808                     | 24,260           | DTR9EP           | 55,143.19              | TT/01/91 |

A-50

PERIOD: 07/01/07 THRU 06/30/08

٠

#### PERIOD: 07/01/07 THRU 06/30/08

•

|        |     |                |          |                                   |                     |             |         | ACQUIS     | TTON     |
|--------|-----|----------------|----------|-----------------------------------|---------------------|-------------|---------|------------|----------|
| EQUIPM | ENT | DESC           | RIPTI    | ON                                | SERIAL NUMBER       | GVW         | FUEL    | COST       | DATE     |
| 91822  | 197 | 93 I           | RUCK:    | INT'L STAKE W/HYD TAILGATE        | 1HTSCPEL6PH469510   | 25,500      | DIESEL  | 37.762.57  | 11/01/92 |
| 91822  | 199 | 93 T           | RUCK     | INT'L BITUMIOUS TANK              | 1KTSDPPN2PH472254   | 28,080      | DIESEL  | 78,157.00  | 11/01/92 |
| 91822  | 201 | 92 T           | RUCK     | GMC 7CY DUMP                      | 1GDP7H1J3NJ525485   | 35.000      | DIESEL  | 45,289,00  | 11/01/92 |
| 91822  | 203 | 93 T           | RUCK     | PETERBILT U/BRDG REACHAL CRANE357 | AXPALBOX2PN331520   | 77,000      | DIESEL  | 417.261.89 | 12/01/92 |
| 91822  | 204 | 84 T           | RUCK:    | INTERNATIONAL DUMP 10 CY          | 1HTGGA2T6RH571307   | 56.000      | DIESEL  | 70,727,99  | 01/01/94 |
| 91822  | 205 | 94 T           | RUCK     | CHEV KODIAK DUMP 2 1/2 CY         | 1GBK6H1J2RJ103896   | 24.260      | DIESEL  | 35,595,50  | 02/01/94 |
| 91822  | 206 | 94 T           | RUCK     | CHEV KODIAK DUMP 2 1/2 CY         | 1GBK6H1J5RJ103813   | 24,260      | DIRSEL  | 34,137,16  | 02/01/94 |
| 91822  | 207 | 94 T           | RUCK     | CHEV KODIAK DUMP 7 CY             | 16BP7H1J4RJ103790   | 35.550      | DIESEL  | 43 328 35  | 02/01/94 |
| 91822  | 208 | 94 T           | RUCK     | INT'L UNDERBRIDGE REACHALL CRANE  | 1HTGGA6T2RH548438   | 77.000      | DIESEL  | 428,900.34 | 05/01/94 |
| 91822  | 209 | 94 T           | RUCK     | GMC STAKE DUMP                    | 1GDMTH1J1RJ505924   | 27.060      | DIESEL  | 39.577.73  | 04/01/94 |
| 91822  | 210 | 94 T           | RUCK     | GMC STAKE DUMP                    | 1GDM7H1J2RJ506113   | 27.060      | DIRSEI. | 39 577 74  | 04/01/94 |
| 91822  | 212 | 95 I           | NTL. A   | ALTEC AERIAL BUCKET MOD. 4900     | 1HTSDAAN9SH641782   | 33,000      | DIESEL  | 234 584 84 | 10/01/04 |
| 91822  | 213 | 95 I           | NTL.     | ALTEC AERIAL BUCKET MOD. 4900     | 1GTSDAARISG641783   | 33,000      | DIRGRI  | 117 292 42 | 10/01/94 |
| 91822  | 214 | 95 T           | RUCK     | INT'L ALTEC DERRIC                | 1HTSDAAR9SH641784   | 35,000      | DIESEL  | 123 952 24 | 11/01/04 |
| 91822  | 215 | 95 T           | RUCK     | FORD STAKE DUMP TRUCK             | 1FDWF80C5SVA18402   | 26.000      | DIESEL  | 26 389 70  | 11/01/94 |
| 91822  | 216 | 95 T           | RUCK     | FORD STAKE W/HYD HOIST            | 1FDWF80C7SVA18403   | 26.000      | DIESEL  | 36 389 70  | 11/01/04 |
| 91822  | 217 | 95 T           | RUCK     | FORD STAKE DUMP                   | 1FDWF80C9SVA18404   | 26,000      | DIESEL  | 26 389 70  | 11/01/04 |
| 91822  | 218 | 95 T           | RUCK     | INT'L DUMP 12 CY                  | 1HTGGAUT6SH641780   | 56.000      | DIESE.  | 71 329 67  | 02/01/94 |
| 91822  | 219 | 95 T           | RUCK     | INT'L DUMP 12 CY                  | 1HTGGAITT8 SH641781 |             | DIESEL  | 70 800 80  | 02/01/95 |
| 91822  | 222 | 83 T           | RUCK     | FORKLIFT (MILILARY)               | 3336022159          | 47 000      | DIESEL  | 1 600 00   | 02/01/95 |
| 91822  | 223 | 97 T           | RUCK     | INTI. TIINNEL WASH VEHICLE        | 14790888999446673   | *),000<br>A | DIEGEI  | 1,000.00   | 00/01/98 |
| 91822  | 224 | 99 7           | RICK     | INTERNATIONAL STAKE CREWCAR       | 1WTGCANLEYUGAGGAA   | ې<br>م      | DIRGRI  | 420,000.00 | 06/01/9/ |
| 91822  | 226 | 99 T           | RICK     | INT'I. TECO AFRIAL BUCKET         | 1WTODD DOOYUGAGG 35 | 22 000      | DIRCEZ  | 11,494.43  | 06/01/99 |
| 91822  | 228 | 99 T           | איזנוריא | INT L THEO ABRIAL BUCKET          | 1013DAAGOANG46635   | 35,000      | DIRGEL  | 179,086.70 | 06/01/99 |
| 91822  | 230 | 99 T           | יאייווקי | THE DIRECT MERIAL BOCKET          | 1013DAAN 7A0040034  | 20,700      | DIESEL  | 180,024.19 | 06/01/99 |
| 91822  | 231 | 00 7           | NUCKI    | FORD BIARE W/BCIBBORS LIFT        | 17DAF46FUANC46765   | 15,000      | DIESEL  | 76,867.99  | 06/01/99 |
| 91822  | 222 | 99 7           | DITOR .  | FORD F-800 W/BOOM                 | JERNEGOLYNNAILCUS   | 33,000      | DIESEL  | 121,266.15 | 06/01/99 |
| 91822  | 222 | 99 T           | PHOCK.   |                                   | JEDARCOMANALISIU    | 33,000      | DIASEL  | 121,266.15 | 06/01/99 |
| 91822  | 234 | 00 7           | NOCK.    | INTEL UTILITY OFFICE 4964         | 1FDAF36F7A5575284   | 17,500      | DIESEL  | 61,842.20  | D6/01/99 |
| 91877  | 233 | 00 1           | DUCKI    | TRICE OF DESCRIPTION NOD 200      | THTSDAAN7YH212102   | 33,000      | DIESEL  | 114,544.98 | 06/01/00 |
| 91922  | 222 | 00 1           | DIJCY .  | TARGIOR PRIBROIDI MOD 375         |                     | 60,060      | DIESEL  | 104,802.38 | 06/01/00 |
| 91922  | 220 | 07 1           | DICY.    | INTERNALIONAL DOME MOD. 26/4      | INTGLAERS IS218405  | 54,060      | DIESEL  | 101,903.92 | 06/01/00 |
| 61433  | 120 | 01 I.<br>00 m  | DIICHZ.  | THE D SOU GALLON TANK             | INIGLANTIIN333470   | 64,000      | DIESEL  | 140,919.12 | 06/01/01 |
| 51022  | 239 | , 00 T         | RUCK     | GMC 2 172 CU XD DUMP C 7500       | 1CDMTR1C3YJ516441   | 27,100      | DIESEL  | 71,887.09  | 06/01/00 |
| 01800  | 240 | 00 1           | RUCKI    | GMC UTILITY BODY C6500            | 1GDG6H1C2YJ516513   | 23,100      | DIESEL  | 83,825.07  | 06/01/00 |
| 91022  | 241 | 00 1           | NUCKI    | GMC LIFT-ALL AERIAL BUCKST C-8500 | IGDP/RIC4YJ516705   | 35,000      | DIESEL  | 174,423.48 | 06/01/00 |
| 21022  | 242 | V4 1.<br>AD 10 | RULA     | INTERNATIONAL DUMP 4700           | LHTSCAAM72H409692   | 25,500      | DIESEL  | 64,541.86  | 06/01/02 |
| 01000  | 243 | V2 1.          | RUCKI    | INTERNATIONAL DUMP 4700           | 1HTSCAAM92H409693   | 25,500      | DIESEL  | 64,541.86  | 06/01/02 |
| 71022  | 244 | 02 1           | RUCKI    | INTERNATIONAL DUMP 4700           | 1HTSCAAM02H409694   | 25,500      | DIESEL  | 64,541.86  | 06/01/02 |
| 91022  | 245 | 02 1           | RUCK     | INTERNATIONAL DUMP 4700           | 1HTSCAAM22H409695   | 25,500      | DIESEL  | 64,021.03  | 06/01/02 |
| 91977  | 246 | 02 1           | RUCK     | INTERNATIONAL TRK TRACTOR 99001   | 2HSCHAET62C030153   | 58,860      | DIESEL  | 101,511.59 | 06/01/02 |
| 91822  | 247 | 87 T.          | RUCK     | FORD ASPHALT THERMO LAY TRUCK     | 1FDWT74P6HVA4443    | 23,100      | DIESEL  | .00        | 06/04/02 |
| 91822  | 248 | 02 T.          | RUCK:    | GMC 2 1/2 CY DUMP C6500           | 1GDK7K1C22J502285   | 25,950      | DIESEL  | 75,362.55  | 08/28/02 |
| 91822  | 249 | 02 T.          | RUCK :   | GMC 2 1/2 CY DUMP C6500           | 1GDK7H1C12J502472   | 25,950      | DIESEL  | 74,112.50  | 08/28/02 |
| 91822  | 250 | 03 T.          | RUCK     | PETERBILT FLATBED W/CRANE         | 1NPZL00X13D714740   | 64,000      | DIESEL  | 262,151.29 | 04/25/03 |
| 91822  | 251 | 02 T           | RUCK :   | GMC DUMP C6500                    | 1GDG6H1CX2J513852   | 23,100      | DIESEL  | 65,923.31  | 05/14/03 |
| AT855  | 252 | 02 T           | RUCK     | GMC DUMP                          | 1GDK7H1C72J515405   | 25,950      | DIESEL  | 75,978.03  | 05/14/03 |
| 91822  | 253 | 03 T.          | RUCK     | PETERBILT W/CRANE/DUMP            | 1NPZL00X33D714741   | 64,000      | DIESEL  | 281,484.93 | 09/12/03 |
| 91822  | 254 | 04 T.          | RUCK     | GMC ALTEC AERIAL/UTILITY MDL 5500 | 1GDE5E1163F521412   | 19,500      | DIESEL  | 95,355.56  | 01/15/04 |
| 91822  | 255 | 04 7:          | RUCK     | PETERBILT DUMP MDL 378            | 1NPFLBOX54D818437   | 58,000      | DIESEL  | 146,217.88 | 01/20/04 |
| 91822  | 256 | 04 T           | RUCK :   | PETERBILT DUMP MDL 378            | 1NPFLBOX74D818438   | 58,000      | DIESEL  | 146,217.88 | 01/20/04 |
| 91822  | 257 | 04 T           | RUCK     | INTERNATIONAL DUMP MOD. 4400 SBA  | 1HTMKAAL44H652480   | 12,780      | DIESEL  | 69,676.86  | 05/24/04 |

HIGHWAYS DIVISION - OAHU DISTRICT

PERIOD: 07/01/07 THRU 06/30/08

E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

|   | 91822  | 260 | 05 TRUCK: PETERBILT TANK #357 SBFA        | 2NPLH28X75M852585   | 19.260 | DIESEL |
|---|--------|-----|-------------------------------------------|---------------------|--------|--------|
|   | 91822  | 261 | 04 TRUCK FORD F350 FLATBED                | 1FDWF36P74EA68038   | 8 620  | DIESEL |
|   | 91822  | 262 | 04 TRUCK FORD F350 FLATBED                | 1FDWF36P54EA68037   | 8,620  | DIESEL |
|   | 91822  | 263 | 04 TRUCK GMC AERIAL "C"                   | 1GDE5C1205F503083   | 19,500 | DIESEL |
|   | 91822  | 264 | 05 TRUCK: GMC DUMP                        | 1GDJ6C13X5F500437   | 25,640 | DIESEL |
|   | 91822  | 265 | 05 TRUCK: GMC DUMP                        | 10DJC1375F500492    | 25,640 | DIESEL |
|   | 91822  | 266 | 05 TRUCK: GMC "T" UTILITY SERVICE         | 1GDJ5C1285F506313   | 26,000 | DIESEL |
|   | 91822  | 267 | 05 TRUCK: GMC DUMP SOLID SIDE PANEL       | 1GDJ6C1335F531982   | 25,640 | DIESEL |
|   | 91822  | 268 | 05 TRUCK GMC FLATBED                      | 1GDE5C1235F528737   | 19,500 | DIESEL |
|   | 91822  | 269 | 06 TRUCK TRACTOR PETERBILT 378SFFA        | 1XPFD40X66D632620   | 60,060 | DIESEL |
|   | 91822  | 270 | 07 TRUCK PETERBILT 7CY DUMP               | 2NPLHZ8X17M673736   | 17,160 | DIESEL |
|   | 91822  | 271 | 08 TRUCK GMC W/UTILITY BODY               | 1GDJ6C1BX8F401578   | 26,000 | DIESEL |
|   | 91822  | 272 | 08 TRUCK GMC C5500 CAB CHASSIS W/AERIAL   | 1GDE5C1908F400294   | 19,500 | DIESEL |
|   | 91822  | 273 | 08 TRUCK INTERNATIONAL DUMP 7400          | 1HTWCAAR98J658638   | 36,220 | DIESEL |
|   | 91822  | 274 | 08 TRUCK INTERNATIONAL DUMP 4400          | 1HTMKAAL68H658559   | 25,999 | DIESEL |
|   | 91832  | 147 | 99 TRAILER: TRAIL KING LOW BOY TK50RG-402 | 1TK\$04021XM026782  | 64,140 | DIESEL |
|   | 91832  | 158 | 05 TRAILER: WATER OMCO 5,000 GAL TANDEM   | DTF450BSR20506506   | 0      | DIESEL |
| • | 91832  | 161 | 06 TRAILER: TRAILKING LOWBOY TK70HGD-472  | 1TKJ047256M103637   | 0      | DIESEL |
|   | 91842  | 166 | 82 OVERLOWE PORTABLE FLOOD LIGHT          | 824681              | 0      | DIESEL |
|   | 91842  | 170 | 85 POWER CURBER CURBING MACHINE           | 150785094           | 0      | DIESEL |
|   | 91842  | 173 | 86 GENERATOR: MILLER WELDER/GENERATOR     | JG057742            | 0      | DIESEL |
|   | 91842  | 174 | 86 GENERATOR: MILLER WELDER/GENERATOR     | JG062668            | 0      | DIESEL |
|   | 91842  | 195 | 89 TRACTOR: FORD MOWER W/EXT FLAIL        | BB85071             | 0      | DIESEL |
|   | 91842  | 211 | 93 TRACTOR: KUBOTA W/ FLAIL MOWER         | 21623               | • 0    | DIESEL |
|   | 91842  | 213 | 93 LIGHT TOWER: MAGNUM FORTABLE 4060 K-MH | 93294 .             | 0      | DIESEL |
|   | 91.842 | 217 | 94 LIGHT TOWER: INGERSOLL-RAND MOD L64MH  | 247798 I.D.#KNC6237 | 0      | DIESEL |
|   | 91842  | 218 | 94 WELDING UNIT MILLER BIG 40 DIESEL      | KE700618            | 0      | DIESEL |
|   | 91842  | 219 | 94 WELDING UNIT MILLER BIG 40 DIESEL      | KE700621            | 0      | DIESEL |

A-52

DESCRIPTION..... SERIAL NUMBER.....

| 04 | TRUCK GMC AERIAL "C"                     | 1GDE5C1205F503083   | 19,500 | DIESEL | 104,297.94 | 03/17/05 | 1   | Ì |
|----|------------------------------------------|---------------------|--------|--------|------------|----------|-----|---|
| 05 | TRUCK: GMC DUMP                          | 1GDJ6C13X5F500437   | 25,640 | DIESEL | 73,592.38  | 06/21/05 | 1   |   |
| 05 | TRUCK: GMC DUMP                          | 1GDJC1375F500492    | 25,640 | DIESEL | 73,592.38  | 06/21/05 | ł – | L |
| 05 | TRUCK: GMC "T" UTILITY SERVICE           | 1GDJ5C1285F506313   | 26,000 | DIESEL | 89,889.85  | 06/21/05 | Í.  | Ì |
| 05 | TRUCK: GMC DUMP SOLID SIDE PANEL         | 1GDJ6C1335F531982   | 25,640 | DIESEL | 75,757.88  | 03/16/06 | l l | L |
| 05 | TRUCK GMC FLATBED                        | 1GDE5C1235F528737   | 19,500 | DIESEL | 57,894.68  | 03/16/06 | 1   | L |
| 06 | TRUCK TRACTOR PETERBILT 378SFFA          | 1XPFD40X66D632620   | 60,060 | DIESEL | 115,692.80 | 06/14/06 |     | L |
| 07 | TRUCK PETERBILT 7CY DUMP                 | 2NPLHZ8X17M673736   | 17,160 | DIESEL | 117,166.09 | 02/09/07 | İ.  | L |
| 80 | TRUCK GMC W/UTILITY BODY                 | 1GDJ6C1BX8F401578   | 26,000 | DIESEL | 138,199.80 |          | ĺ   | L |
| 80 | TRUCK GMC C5500 CAB CHASSIS W/AERIAL     | 1GDE5C1908F400294   | 19,500 | DIESEL | 145,360.76 | 04/21/08 | ł   | L |
| 80 | TRUCK INTERNATIONAL DUMP 7400            | 1HTWCAAR98J658638   | 36,220 | DIESEL | 112,043.80 | 04/30/08 | i i | L |
| 08 | TRUCK INTERNATIONAL DUMP 4400            | 1HTMKAAL68H658559   | 25,999 | DIESEL | 91,253.29  | 04/30/08 | i i | ĺ |
| 99 | TRAILER: TRAIL KING LOW BOY TK50RG-402   | 1TK\$04021XM026782  | 64,140 | DIESEL | 41,666.40  | 06/01/99 | i i | 1 |
| 05 | TRAILER: WATER OMCO 5,000 GAL TANDEM     | DTF450BSR20506506   | 0      | DIESEL | 131,989.64 | 12/28/05 | i i | 1 |
| 06 | TRAILER: TRAILKING LOWBOY TK70HGD-472    | 1TKJ047256M103637   | 0      | DIESEL | 68,894.15  | 06/14/06 |     | Ì |
| 82 | OVERLOWE PORTABLE FLOOD LIGHT            | 824681              | 0      | DIESEL | 13,856.00  | 08/01/92 | ł   | ł |
| 85 | POWER CURBER CURBING MACHINE             | 150785094           | 0      | DIESEL | 6,562.40   | 08/01/85 |     |   |
| 86 | GENERATOR: MILLER WELDER/GENERATOR       | JG057742            | 0      | DIESEL | 3,320.00   | 07/01/86 | 1   | ļ |
| 86 | GENERATOR: MILLER WELDER/GENERATOR       | JG062668            | 0      | DIESEL | 3,320.00   | 07/01/86 | i i | L |
| 89 | TRACTOR: FORD MOWER W/EXT FLAIL          | BB85071             | 0      | DIESEL | 37,380.07  | 07/01/89 | 1   | L |
| 93 | TRACTOR: KUBOTA W/ FLAIL MOWER           | 21623               | . 0    | DIESEL | 16,403.65  | 03/01/93 | Ì   | L |
| 93 | LIGHT TOWER: MAGNUM PORTABLE 4060 K-MH   | 93294               | 0      | DIESEL | 10,610.40  | 09/01/93 | 1   | L |
| 94 | LIGHT TOWER: INGERSOLL-RAND MOD L64MH    | 247798 I.D.#KNC6237 | 0      | DIESEL | 13,402.51  | 10/01/94 | ł – | L |
| 94 | WELDING UNIT MILLER BIG 40 DIESEL        | KE700618            | 0      | DIESEL | 8,145.80   | 12/01/94 |     | ł |
| 94 | WELDING UNIT MILLER BIG 40 DIESEL        | KE700621            | 0      | DIESEL | 8,145.80   | 12/01/94 |     | J |
| 96 | SPRAYER, FMC JOHN BEAN DM10E300FERH      | JB00320NA           | 0      | DIESEL | 11,048.64  | 02/01/96 | ł – | ł |
| 96 | CHIPPER, MORBARK EZ #2200                | 2773                | 0      | DIESEL | 24,342.79  | 12/01/96 | İ.  | 1 |
| 96 | CHIPPER, MORBARK EZ #2200                | 2774                | 0      | DIESEL | 24,343.83  | 12/01/96 |     | l |
| 96 | CHIPPER, MORBARK EZ #2200                | 2775                | 0      | DIESEL | 24,343.00  | 12/01/96 |     |   |
| 98 | SIGN MESSAGE BOARD ELECTRONIC W/TRAILER  | 069801-T2           | 0      | DIESEL | 32,920.00  | 06/01/98 |     | L |
| 9B | MOWER: TORO GROUNDMASTER 580D            | 30581-80278         | . 0    | DIESEL | 65,811.10  | 06/01/98 |     | L |
| 98 | MOWER: TORO GROUNDMASTER 325D MOD 30795  | 30795-80338         | 0      | DIESEL | 25,357.45  | 06/01/98 | 1   | L |
| 98 | MOWER: TORO GROUNDMASTER 325D MOD 30795  | 30795-80340         | 0      | DIESEL | 25,669.94  | 06/01/98 |     | L |
| 98 | MOWER: TORO GROUNDMASTER 325D MOD 30795  | 30795-80342         | 0      | DIESEL | 25,878.28  | 06/01/98 | 1   | L |
| 99 | MOWER: KUBOTA TRACTOR MOWER              | 7030-21047          | 0      | DIESEL | 41,200.33  | 06/01/99 | 1   |   |
| 99 | MOWER: KUBOTA TRACTOR MOWER              | 7030-21049          | 0      | DIESEL | 41,200.33  | 06/01/99 |     |   |
| 99 | AUGER, MELROE MODEL 15                   | 187403365           | 0      | DIESEL | 2,166.65   | 06/01/99 |     | l |
| 99 | MOWER: TORO GROUND MASTER                | 30243-90111         | 0      | DIESEL | 19,041.17  | 06/01/99 | 1   |   |
| 99 | MOWER: TORO GROUNDMASTER 223-D           | 30243-90114         | 0      | DIESEL | 19,560.92  | 06/01/99 |     |   |
| 99 | MOWER: TORO GROUNDMASTER 223-D           | 30243-90118         | 0      | DIESEL | 19,560.92  | 06/01/99 |     |   |
| 99 | MOWER: TORO GROUNDMASTER 223-D MOWER     | 30243-90119         | 0      | DIESEL | 19,560.92  | 06/01/99 |     |   |
| 99 | MOWER: TORO GROUNDMASTER 223-D           | 30243-90120         | 0      | DIESEL | 19,560.92  | 06/01/99 |     |   |
| 99 | MOWER: TORO GROUNDMASTER 325D MOD. 30795 | 90146               | 0      | DIESEL | 27,113.60  | 06/01/99 | 1   |   |
| 99 | MOWER: TORO GROUNDMASTER 325D MOD. 30795 | 90142               | 0      | DIESEL | 27,113.60  | 06/01/99 |     |   |
| 99 | MOWER: TORO GROUNDMASTER 325D MOD. 30795 | 90268               | 0      | DIESEL | 27,113.59  | 06/01/99 | 1   |   |
| 99 | MOWER: TORO GROUNDMASTER 325D MOD. 30795 | 90390               | 0      | DIESEL | 27,113.59  | 06/01/99 | 1   |   |
| 99 | MOWER: TORO GROUNDMASTER 325D MOD 30795  | 90176               | 0      | DIESEL | 26,686.38  | 06/01/99 | 1   |   |
| 99 | TRACTOR: KUBOTA W/SIDE EXT. MOWER M8200  | 10559               | 0      | DIESEL | 60,483.02  | 06/01/99 |     |   |

GVW

FUEL .....

----ACOUISITION-----

COST

118,994.90

36,606.02

36,606.02

DATE

12/08/04

12/02/04

12/02/04

EQUIPMENT

91842

91842

91842

91842

91842

91.842

91842

91842

91842

91842

91842

91842

91842

91842

91842

91842

91842 228

91842 236

91842 243

91842 244

91842 252

225 91842 226

227

240

241

242

245

246

251

253

254

255

257

258

259

260

261 91842 266

PERIOD: 07/01/07 THRU 06/30/08

. •

.

| EQUIP          | MENT  | DESCRIPTION                                  |                   |        |        | ACQUIS     | ITION       |
|----------------|-------|----------------------------------------------|-------------------|--------|--------|------------|-------------|
| ~              |       | DEGGATE 1100                                 | SERIAL NUMBER     | . GVW  | FUEL   | COST       | DATE        |
| 91842          | 267   | 99 TRACTOR, KUBOTA W/SIDE EVT MOWER MADAG    | 10571             |        |        |            |             |
| 91842          | 268   | 99 MOWER: TORO GROUNDMASTER 580D TRIDIEN     | 10561             | 0      | DIESEL | 60,170.52  | 06/01/99    |
| 91842          | 269   | 00 LIGHT TOWER: WACKER LTPA                  | 50489             | 0      | DIESEL | 71,246.83  | 06/01/97    |
| 91842          | 270   | 00 NONER TORO GROINDMASTER 325D 20795        | 5112668           | 0      | DIESEL | 10,622.00  | 06/01/97    |
| 91842          | 271   | 97 MESSAGE BOARD PORTABLE ADDCO SOLAN        | 200000106         | 0      | DIESEL | 26,888.27  | 06/01/97    |
| 91842          | 272   | 97 MESSAGE BOARD PORTABLE ADDCO SOLAR        | DH1000 SN584940   | 3,700  | DIESEL | 37,000.00  | 06/01/97    |
| 91842          | 273   | 97 MESSAGE BOARD DOPTABLE ADDCO SOLAR        | DH 1000 SN 584984 | 3,700  | DIESEL | 37,000.00  | 06/01/97    |
| 91842          | 274   | 97 MESSAGE BOARD PORTABLE ADDCO SOLAR        | DH1000 SN584985   | 3,700  | DIESEL | 37,000.00  | 06/01/97    |
| 91842          | 275   | 97 MESSAGE BOARD PORTABLE ADDCO SOLAR        | DH1000 SN 584991  | 3,700  | DIESEL | 37,000.00  | 06/01/97    |
| 91842          | 279   | 01 LIGHT TOWER, TRAILER MOUNT MACKING AND AR | DR1000 SN 584997  | 3,700  | DIESEL | 37,000.00  | 06/01/97    |
| 91842          | 280   | 01 LIGHT TOWER, TRAILER MOUNT WACKER LIP42   | 5231940           | 1,990  | DIESEL | 9,330.00   | 06/01/97    |
| 91842          | 261   | 01 LIGHT TOWER, TRAILER MOUNT WACKER DIP4    | 5231941           | 1,990  | DIESEL | 9,330.00   | 06/01/97    |
| 91842          | 282   | 01 LIGHT TOWER, TRAILER MOUNT WACKER DIP4    | 5231942           | 1,990  | DIESEL | 9,330.00   | 06/01/97    |
| 91842          | 283   | 01 TRACTOR, KUROWA HETI, M/D MED DIALI MONDA | 5231943           | 1,990  | DIESEL | 9,330.00   | 06/01/97    |
| 91842          | 284   | 02 MESSAGE BOADD, NAW STONAL BRATTER WER     | 10778             | ´ 0    | DIESEL | 39,948.99  | 06/01/97    |
| 91842          | 285   | 02 MESSAGE BOARD, MATH SIGNAL TRAILER MID    | 189M214112L358009 | 3,500  | DIESEL | 24,790.67  | 09/12/02    |
| 91842          | 288   | 02 TRACTOR, CASE ITTL M/DEAD MED DIAL MOUL   | 189M24132L358013  | 3,500  | DIESEL | 24,790.66  | 09/12/02    |
| 91842          | 289   | 02 TRATIER, SOLAR MEGU MER MURGER REALL MOWE | C080RS4JJE1020833 | 0      | DIESEL | 39,166.42  | 09/27/02    |
| 91842          | 290   | 12 TRAILER, SOLAR IECH MTD MESSAGE BOARD     | 408562            | 2,900  | DIESEL | 24,834.28  | 11/20/02    |
| 91842          | 291   | 02 TRAILER: SOLAR IECH MID MESSAGE BOARD     | 408563            | 2,900  | DIESEL | 24,834.28  | 11/20/02    |
| 91842          | 292   | 02 TRAILER: SOLAR IECH MID MESSAGE BOARD     | 408564            | 2,900  | DIESEL | 24,834.28  | 11/20/02    |
| 91842          | 293   | 02 LIGHT TOWER, THORPHONE PARE BOARD         | 408565            | 2,900  | DIESEL | 24,834.28  | 12/12/02    |
| 91842          | 294   | 02 LIGHT TOWER: INGERSOLL-RAND TRAILER MTD.  | 331077/1077       | 3,640  | DIESEL | 12,812.41  | 09/26/02    |
| 91842          | 295   | 02 LIGHT TOWER: INGERSOLL-RAND TRAILER MTD   | 3310781078        | 3,640  | DIESEL | 12,812.42  | 09/26/02    |
| 91842          | 296   | 02 MOWER: INGERSOLL-RAND TRAILER MTD         | 331079/1079       | 3,640  | DIESEL | 12,812.42  | 09/26/02    |
| 91.842         | 297   | 02 TEACTOR FORD DEAD WITH ALL HE             | 30627-220000268   | 0      | DIESEL | 26,281.08  | 03/25/03    |
| 91842          | 298   | 03 TRACIOR: FORD 1590 W/EXT S/R MTD FLAIL    | 199806B           | 0      | DIESEL | 72,916.20  | 10/23/03    |
| 91842          | 299   | A TRACTOR, FORD TOSC W/EXT. S/R MTD FLAIL    | 199913B           | 0      | DIESEL | 72,916.20  | 10/27/03    |
| 91842          | 301   | A TRACTORI FORD 1590 W/EXT. S/R MTD PLAIL    | 200222B           | 0      | DIESEL | 72,916,20  | 10/27/03    |
| 91842          | 302   | 03 TRACIORI KUBOTA UTIL. W/REAR MTD FLAIL    | 11071             | 0      | DIESEL | 41,727.45  | 12/26/03    |
| 91842          | 303   | S I LOUR COURD OVER A MER AND FLAIL          | 11073             | 0      | DIESEL | 41,727.45  | 12/26/03    |
| 91842          | 304   | AS LIGHT TOWER: OVER LOWE                    | 851824/M          | 0      | DIESEL | 1,700.00   | 06/30/03    |
| 91842          | 202   | AS LIGHT TOWER: OVER LOWE                    | 851792/M          | 0      | DIESEL | 1,700.00   | 06/30/03    |
| 91842          | 211 . | OF LIGHT TOWER: OVER LOWE                    | 851846/M          | 0      | DIESEL | 1.700.00   | 06/30/03    |
| 91852          | 120   | CONTROL ADDRESS INGERSOLL-RAND LIGHTSOURCE   | 356563UEP789      | 0      | DIESEL | 11,600.00  | 06/30/06    |
| 91852          | 176   | 82 CRAFCU ASPHALT SEALER W/JOINT CRACK MACH  | 3149 & C0185      | 3,500  | DIESEL | 23.040.16  | 09/01/82    |
| 91862          | 127   | AS IRUCK: INTL SEWER HYDROJET VAC CLEANER    | 1HTLDTVR4FHA62673 | 35,180 | DIESEL | 104,893,36 | 10/01/85    |
| 91862          | 141   | 84 COMPRESSOR:LEROI                          | 3119X1100         | 2,560  | DIESEL | 12.064.00  | 09/01/86    |
| 91852          | 147   | 66 LUADER: JUHN DEERE ARTICULATING           | DW644ED520958     | 34,404 | DIESEL | 96,838,52  | 12/01/88    |
| 91852          | 144   | AN CACE LOADER                               | JJG0012229        | 17,500 | DIESEL | 38,323.03  | 11/01/88    |
| 91952          | 140   | 91 CASE LUADER/BACKHOE                       | JJG0163916        | 20,000 | DIESEL | 33,986,57  | 10/01/91    |
| 01052          | 101   | 92 COMPRESSOR: ATLAS COPCO PORTABLE AIR 7    | ARP978949         | 0      | DIESEL | 11,197,95  | 10/01/92    |
| 91052          | 160   | 93 COMPRESSOR: ATLAS COPCO PORTABLE          | 101600414         | 0      | DIESEL | 11.350.07  | 12/01/93    |
| 01050          | 152   | 93 JOHN DEERE BACKHOE TURBO 4X4              | C0410DG794985     | 0      | DIESEL | 56.231.43  | 12/01/93    |
| 91853          | 150   | 93 ROLLER: DYNAPAC TANDEM CC-211             | 51510446          | 0      | DIESEL | 65,121.04  | 12/01/93    |
| 91094<br>01051 | 155   | 94 SWEEPERS: JOHNSTON VANGUARD 4000 SP 1     | JSVM4H2XRC041015  | 26,000 | DIESEL | 134,292.10 | 08/01/94    |
| 91054          | 157   | JANDER: CASE MDL: 621-B                      | EE0040796         | 0      | DIESEL | 79.404.42  | 10/01/94    |
| 01052          | 150   | JA LOADER: CASE MDL 821-B                    | EE0040797         | 0      | DIESEL | 126,904,57 | 10/01/94    |
| J10J2<br>610₽0 | 109   | 56 LOADER: BOBCAT SKID INGERSOL RAND #763 5  | 12220135          | 0      | DIESEL | 17,807.36  | 12/01/96    |
| 91054          | 100   | 98 LOADER/BACKHOE JOHN DEERE 310SE 4X4 T     | O310SE848919      | 0      | DIESEL | 68.393.31  | 06/01/90    |
| 91052<br>01050 | 160   | 36 LOADER/BACKHOE JOHN DEERE 310SE 4X4 T     | 0310SE848978      | 0      | DIESEL | 57.976.71  | 06/01/98    |
| 21033          | TON   | 99 SWEEPER: ELGIN/STERLING 4-WHEEL MECH. 4   | 9H6WFAA6XHA71218  | 32,000 | DIESEL | 15.138.61  | 06/01/99    |
|                |       |                                              |                   | -      |        |            | ~~/ ~~/ ~ / |

#### PERIOD: 07/01/07 THRU 06/30/08

.

| EQUIPM | ENT  | DESCRIPTION                           | SERIAL NUMBER                           | GVW    | FUEL        | . Cost         | DATE        |
|--------|------|---------------------------------------|-----------------------------------------|--------|-------------|----------------|-------------|
| 91852  | 163  | 99 BOBCAT: MELROE INGERSOLL RAND 873  | 514124589                               | 0      | DIESEL      | 35,054.77      | 06/01/99    |
| 91852  | 164  | 99 LOADER/FORKLIFT: KOMATSU WA180-3L  | A80497                                  | 0      | DIESEL      | 74,634.94      | 06/01/99    |
| 91852  | 1.65 | 00 COMPRESSOR: PDS 1855 AIRMAN AIR    | 53-6A11637                              | 0      | DIESEL      | 13,395.00      | 06/01/00    |
| 91852  | 166  | 99 ROLLER: WACKER VIBRATORY RD-25     | 5080819                                 | 0      | DIESEL      | 30,721.25      | 06/01/99    |
| 91852  | 167  | 00 BOBCAT: MELROE INGERSOLL RAND 873  | 514141825                               | 0      | DIESEL      | 32,313.60      | 06/01/00    |
| 91852  | 1.68 | 00 BOBCAT: MELROE INGERSOLL RAND 873  | 514141831                               | 0      | DIESEL      | 32,313.60      | 06/01/00    |
| 91852  | 169  | 00 TRUCK: INT'L SEWER HYDRO JET VACUU | 1HTGLAHTOYH333471                       | 66,000 | DIESEL      | 253,878.68     | 06/01/00    |
| 91852  | 170  | 01 SWEEPER: INT'L. W/ELGIN CROSSWIND  | 1700 1HTSCAAN81H333472                  | 33,000 | DIESEL      | 135,115.42     | 06/01/01    |
| 91852  | 171  | 02 TRUCK: VOLVO SEWER HYDRO VAC JET C | LEANER 4V5KC9UF92N329529                | 66,000 | DIESEL      | 267,290.45     | 06/01/02    |
| 91852  | 172  | 01 LOADER: NEW HOLLAND LS 180         | 187694                                  | 0      | DIESEL      | 32,770.62      | 06/01/02    |
| 91852  | 173  | 02 TRUCK: GMC MOUNTED DIESEL SWEEPER  | 1GDP7C1C02J504190                       | 34,350 | DIESEL      | 171,392.88     | 06/18/02    |
| 91852  | 174  | 02 TRUCK: GMC MOUNTED DIESEL SWEEPER  | 1GDP7C1C02J504223                       | 34,350 | DIESEL      | 171,288.71     | 06/18/02    |
| 91852  | 175  | 02 GRADER: GALION ARTICULATED MOTOR G | RADER 71079                             | 0      | DIESEL      | 108.332.64     | 06/18/02    |
| 91852  | 176  | 02 SWEEPER: GMC TRUCH MOUNTED T8500   | 1GDP7C1C22J513277                       | 34.350 | DIESEL      | 172,846,84     | 12/16/02    |
| 91852  | 177. | 02 SWEEPER: GMC TRUCK MOUNTED         | 1GDP7C1C82J513588                       | 34,350 | DIESEL      | 172,846.82     | 12/16/02    |
| 91852  | 178  | 03 BACKHOE/LOADER: NEW HOLLAND NOD LB | 90 031046530                            | . 0    | DIESEL      | 68,228,73      | 05/04/04    |
| 91852  | 179  | 04 LOADER: CATERPILLAR TRACK MOD 939C | 60801575                                | 0      | DIESEL      | 94.008.36      | 03/07/05    |
| 91852  | 180  | 05 TRUCK PETERBILT SEWER HYDRO JET-VA | CUUM 1NPAL00X05D851359                  | 37.540 | DIESEL      | 276,122.91     | 03/07/05    |
| 91852  | 181  | 04 SWEEPER GMC TRUCK T7F042           | 1GDM7F1344F509306                       | 33,000 | DIESEL      | 205,462.03     | 03/17/05    |
| 91852  | 182  | 05 LOADER: KOMATSU FRONT END WHEEL    | 65912                                   | 0      | DIESEL      | 95,311,89      | 12/28/05    |
| 91852  | 183  | 05 LOADER/BACKHOE CASE 590SM          | N5C394588                               | 0      | DIESEL      | 97,916.04      | 06/14/06    |
| 91852  | 184  | 08 EXCAVATOR 07 KOMATSU MOD PC138USLC | 21539                                   | 0      | DIESEL      | 140.131.36     | 02/11/08    |
| 91852  | 185  | 07 PATCHER 07 PYTHON POTHOLE          | PP-002-1207                             | 0      | DIESEL      | 288.871.90     | 04/02/08    |
| 91862  | 103  | 76 DROFT MOBILE CRANE                 | 6223703                                 | 10.500 | DIESEL      | 20.000.00      | 06/01/78    |
| 91862  | 108  | 98 TRUCK: LIFT BOOM GROVE ARTICULAT'G | AMZ68 46668                             | 27.420 | DIESEL      | 95,907,76      | 09/01/98    |
| 91862  | 109  | 98 BARRIER TRANSFER MACHINE, BTM ZIPM | DBILE 195                               | 69.292 | DIESEL      | 1,700,000,00   | 07/29/98    |
| 91862  | 110  | 98 BARRIER TRANSFER MACHINE, BTM ZIPM | DBILE 196                               | 69,292 | DIESEL      | 1,700,000.00   | 09/11/98    |
| 91862  | 113  | 00 PALLET JACK: HYSTER ELECTRIC 60    | B199H06696X                             | 0      | DIESEL      | 10,200.00      | 04/18/00    |
| 91862  | 114  | 99 PUMP GORMAN-RUPP PORT TRASH PA6160 | -4045D 1160590                          | 5.200  | DIESEL      | 39,893.49      | 06/01/00    |
| 91,862 | 115  | 84 FORKLIFT: 84 TCM 6000 MODEL #FG3DN | Г 44430599                              | 16.280 | DIESEL      | 1,400.00       | 05/17/04    |
| 91862  | 116  | 06 CHIPPER BANDIT 280                 | 1107                                    | 0      | DIESEL      | 46.666.38      | 12/29/06    |
| 91862  | 117  | 06 CHIPPER BANDIT 280                 | 1108                                    | 0      | DIESEL      | 46,666.36      | 12/29/06    |
| 91862  | 118  | 06 CHIPPER BANDIT 280                 | 1110                                    | 0      | DIESEL      | 46.666.36      | 12/29/06    |
|        | •    |                                       | ,                                       |        |             | FUEL TYPE TOTA | λL          |
| 91812  | 537  | 97 TRUCK, CHEV PICKUP                 | 1GCCS14X9V8171357                       | 0      | PROPANE     | 19.634.36      | 05/01/97    |
| 91812  | 563  | 99 TRUCK: GMC SIERRA EXT CAB PICKUP 2 | 500 10000000000000000000000000000000000 | 8.600  | PROPANE     | 32.735.04      | 06/01/99    |
| 91812  | 568  | 97 TRUCK: CHEVROLET MPVH BLAZER       | 1GNDT13W8V2239006                       | 0      | PROPANE     | .00            | 06/01/97    |
| 91812  | 572  | 98 TRUCK: FORD MPVH EXPLORER          | 1 FM2U34X9WUA20006                      | ő      | PROPANE     | .00            | 06/01/98    |
| 91.812 | 573  | 98 TRUCK: FORD MEVE EXPLORER          | 1 FM21134 X 0WTA 20007                  | ů.     | PROPANE     | -00            | 06/01/98    |
| 91812  | 574  | 98 TRUCK: FORD MEVH EXPLORER          | 1 FMZ1134 X2WIA20008                    | ů      | PROPANE     | .00            | 06/01/98    |
| 91812  | 576  | 98 TRUCK: FORD RANGER PICK UP         | 1FT2R15X5WPA15246                       | 0      | PROPANE     | .00            | 06/01/98    |
| 91812  | 589  | 00 TRICK: FORD 4 W/D PU W/ALTERNATE F | TEL. 1FTZR15X3YPB48056                  | 5.080  | PROPANE     | 29 959.18      | 06/01/00    |
| 91812  | 590  | OO TRUCK, FORD 4 W/D PU W/ALTERNATE F | IEI. 1FT2R15X5YPB48057                  | 5 080  | PROPANE     | 29,959,18      | 06/01/00    |
| 91812  | 641  | 04 VAN FORD E350                      | 1FMNE311.94HB42867                      | 5,000  | PROPANE     | 39,765,11      | 03/17/05    |
| 91812  | 642  | 04 VAN: FORD E350                     | 1 FMNE3 11.7AWRADAKK                    | ່ ດ    | PROPANE     | 39,765.11      | 03/17/05    |
| 91.842 | 233  | 97 THERMO PLASTIC STRIPING MACHINE    | 1. (1,55 11; 115 18000                  | ň      | PROPANE     | .00            | 01/01/97    |
|        |      | · · · · · · · · · · · · · · · · · · · |                                         | v      |             | FUEL TYPE TOTA | ΔL, 51, 57, |
|        |      |                                       |                                         |        |             |                |             |
| 91812  | 591  | 00 TRUCK: FORD PU W/ALTERNATE FUEL    | 2FTPX17ZXYCA99791                       | 7,700  | PROPANE/GAS | 32,342.98      | 06/01/00    |
| 91812  | 592  | 00 TRUCK: FORD PU W/ALTERNATE FUEL    | 2FTPX17Z1YCA99792                       | 7,700  | PROPANE/GAS | 31,822.15      | 06/01/00    |

----ACQUISITION-----

.. \*

| 91812          | 593        | 00         | TRUCK: FORD PU W/ALTERNATE FUEL          | 2FTPX17Z3YCA99793                       | 7,700  | PROPANE/GAS    | 32.342.98      | 06/01/00 |
|----------------|------------|------------|------------------------------------------|-----------------------------------------|--------|----------------|----------------|----------|
| 91812          | 650        | 05         | TRUCK FORD F150 PICKUP                   | 1FTRF12W35NA04809                       | 0      | PROPANE/GAS    | 37,305.33      | 10/04/05 |
| 91812          | 651        | 05         | TRUCK: FORD 150 PICKUP                   | 1FTRF12W15NA04808                       | ů.     | PROPANE/GAS    | 37.305.34      | 10/04/05 |
| 91812          | 652        | 05         | TRUCK: FORD 150 PICKUP                   | 1 FTRF1 20X5NA04807                     | 0      | PROPANE/GAS    | 37,305,34      | 10/04/05 |
| 91 <b>81</b> 2 | 653        | 05         | TRUCK: FORD 150 PICKUP                   | 1FTRF120X5NA04810                       | . 0    | PROPANE/GAS    | 37,305,33      | 10/04/05 |
| 91812          | 654        | 04         | VAN: FORD E350                           | 1 FMNE311.15HA05889                     | 0      | PROPAME / GAS  | 39 094 12      | 12/14/05 |
| 91812          | 700        | 07         | SUV 06 FORD SPORT LETTLITY EXPLORER      | 1 FMEU62E56UB38457                      | 0      | DRODANE /CLAS  | 32 245 22      | 06/22/07 |
| 91812          | 701        | 07         | VAN 06 FORD B350                         | 1 EMNE31 S66DB02148                     | 0      | PROPANE/GAS    | 39 752 87      | 06/21/07 |
| 91812          | 70B        | 07         | VAN FORD E150                            | 1 EMNEL 11, X 710834373                 | ő      | DRODANE/GAG    | 13 779 75      | 04/21/08 |
| 91812          | 709        | 07         | VAN FORD E150                            | 1 5MNE1 11.27DB34373                    | 0      | DRODANE/GAS    | 43,733,25      | 04/21/00 |
| 91812          | 711        | 0.8        | SUV FORD ESCAPE COMPACT                  | 1 FMCTIO3ZOSKB33431                     | ő      | DRODANE/GAS    | 29 922 50      | 04/30/08 |
| 91812          | 713        | 0.B        | SIN FORD EXPLORER SPORT ITTLITTY 4X4     | 1 EMELIO 2 E 2 8 1 8 1 5 8 5 4 5 1      | 0      | DROPANE/GAS    | A3 704 66      | 04/30/08 |
|                |            | ••         | SOV TONS MEDSAGA STORT OTTMETTI AND      | ITAG / SE / CORLSSO                     | v      | PROPANE/ ONS   | 104.00         | 03/20/00 |
|                |            |            |                                          |                                         |        |                | FORD TIPE TOT. | AП       |
| 91812          | 604        | ดา         | SEDAN, FORD 4 DOOR TAIRUS                | 1 5450522214252114                      | A 69A  | FTHONDI. CONS. | 17 605 74      | 06/01/01 |
| 91812          | 612        | 02         | SEDAN, FORD TAURUS ADD                   | 100000000000000000000000000000000000000 | 4,004  | ETHONAL OAS    | 10 003 03      | 00/01/01 |
| 91812          | 618        | 02         | TPK, FORD EXPLOSED 4YA 4 DP              | 1 FM21172K222C52474                     | 5 940  | ETHONAL/GAS    | 43 133 33      | 00/10/02 |
| 91812          | 619        | 02         | TOK. FORD FYDLORER SDOOT ITTLITY         | 3 DMUICOV1 07/20074                     | 5,040  | ETHONAL/GAS    | 40 151 83      | 09/12/02 |
| 91812          | 634        | กร         | THE FORD DEFENSION DECKI STILLT          | 1 59900 414 205 41 206                  | 5,700  | EINONAL/GAS    | 40,151.05      | 12/02/04 |
| 91817          | 636        | 03         | TRUCK FORD PU                            | 1F11R44V43TAV1223                       | U      | ETHONAL/GAS    | 18,500.25      | 12/09/04 |
| 01010          | 635        | 03         | TRUCK FORD FU .                          | 1912R44V03PB225/3                       | U      | ETHUNAL/GAS    | 18,500.25      | 12/09/04 |
| 01012          | 000<br>716 | 0.3        | TRUCK FORD PU                            | 1FT2R44V83PB35376                       | 0      | STHONAL/GAS    | 18,500.25      | 12/09/04 |
| 91014<br>01010 | 638        | 04         | TRUCK DODGE PU                           | 1D7HA16P54J253265                       | U      | ETHONAL/GAS    | 22,807.16      | 12/09/04 |
| 01010<br>3787% | 64.3       | 05         | SEDAN, FORD 4 DR. TAURUS                 | 1FAFP532X5A160474                       | 0      | ETHONAL/GAS    | 14,551.99      | 06/24/05 |
| 91815          | 644        | 05         | SEDAN: FORD 4DR TAURUS                   | 1FAFP53265A160472                       | 0      | ETHONAL/GAS    | 1.00           | 06/24/05 |
| <b>ATRT5</b>   | 645        | 05         | SEDAN: FORD 4 DR TAURUS                  | 1FAFP53285A160473                       | 0      | ETHONAL/GAS    | 1.00           | 06/24/05 |
| 91812          | 656        | 05         | SEDAN: FORD TAURUS 4 DR.                 | IFAFP532X5A303679                       | 0      | ETHONAL/GAS    | 15,940.24      | 12/28/05 |
| 91812          | 657        | 05         | SEDAN: FORD TAURUS 4 DR.                 | 1FAFP53245A303676                       | 0      | ETHONAL/GAS    | 15,940.24      | 12/28/05 |
| 91812          | 658        | <b>0</b> 5 | SEDAN: FORD TAURUS 4 DR.                 | 1FAFP53265A303677                       | 0      | ETHONAL/GAS    | 15,940.24      | 12/28/05 |
| 91812          | 659        | 05         | SEDAN: FORD TAURUS 4 DR.                 | 1FAFP53285A303681                       | 0      | ethonal/gas    | 15,940.23      | 12/28/05 |
| 91812          | 660        | 05         | SEDAN: FORD TAURUS 4 DR.                 | 1FAFP53285A303678                       | 0      | ETHONAL/GAS    | 15,940.23      | 12/28/05 |
| 91812          | 661        | 05         | SEDAN: FORD TAURUS 4 DR.                 | 1FAFP53265A303680                       | 0      | ETHONAL/GAS    | 15,940.24      | 12/28/05 |
| 91812          | 675        | 05         | SUV FORD EXPLORER                        | 1FMZU62KX5ZA62730                       | 0      | ETHONAL/GAS    | 23,176.94      | 12/30/05 |
| 91812          | 681        | 06         | SEDAN FORD TAURUS                        | 1FAFP53266A262890                       | 0      | ETHONAL/GAS    | 24,037.98      | 01/23/07 |
| 91812          | 682        | 06         | TRUCK DODGE RAM 1500 QUAD CAB PU         | 1D7HA18P96J200732                       | 0      | ETHONAL/GAS    | 26,568.58      | 12/22/06 |
| 91812          | 683        | 06         | TRUCK DODGE QUAD CAB RAM 1500 PU         | 1D7HA18P06J200733                       | 0      | ETHONAL/GAS    | 26,568.58      | 12/22/06 |
| 91812          | 684        | 06         | TRUCK DODGE RAM 1500 PU                  | 1D7HA16P36J200728                       | 0      | ETHONAL/GAS    | 22,772.77      | 12/22/06 |
| 91812          | 685        | 06         | TRUCK DODGE RAM 1500 PU                  | 1D7HA16P36J200731                       | ٥      | ETHONAL/GAS    | 22,772.77      | 12/22/06 |
| 91812          | 686        | 06         | TRUCKK DODGE RAM 1500 PU                 | 1D7HA16P56J200729                       | 0      | ETHONAL/GAS    | 22,772.77      | 12/22/06 |
| 91812          | 687        | 06         | TRUCK DODGE RAM_1500 PU                  | 1D7HA16P16J200730                       | n      | ETHONAL/GAS    | 22.772.77      | 12/22/06 |
| 91812          | 688        | 06         | TRUCK DODGE RAM 1500 OUAD CAB 4X4        | 7HU18P66J201912                         | 0      | ETHONAL/GAS    | 28.477.94      | 12/22/06 |
| 91812          | 689        | 06         | TRUCK DODGE RAM 1500 OUAD CAB 4X4        | 10780182867201913                       | ů.     | ETHONAL/GAS    | 28.477.94      | 12/22/06 |
| 91812          | 690        | 06         | TRUCK DODGE RAM 1500 OUAD CAB 4X4        | 107817140767201914                      | ň      | ETHONAL/GAS    | 29 477 94      | 19/22/06 |
| 91812          | 699        | 07         | TRICK OF FORD F150 DI                    | 1 570 51 377 6 10 4 1 0 4 4             | Ň      | STUDNAL /CAR   | 20,417.04      | 04/19/07 |
| 20000          | <b>~</b>   | Ŷ,         | 1100A VO FORD 119V 20                    | TEINETSAYOND41044                       |        | атпонны вно    | 24,303.03      | λT.      |
|                |            |            |                                          |                                         |        |                | FORD TIPE TOT. | h.1)     |
| 91822          | 227        | 00         | RADVITET, CAREDDITIND DIDOWNIC INCOMP    | 8180110471                              | 0      |                | 11 429 14      | 00101100 |
| 21000          | 501        | 22         | FORREIFIT CRIEKETHING EDECIRIC LIFI IKK  | R26C320272                              | v      | SUSCIRIC       | 31,437.3V      | 06/01/99 |
|                |            |            |                                          |                                         |        |                | FORD TIPE TOT  | 810      |
| 91832          | 7 (1 2     | 77         | TRATIFO. FURDOPERN COMP.                 | 202                                     | ~      |                | ~~             | 03/01/22 |
| 91830          | 103        | 40         | TRAILER, REFILLIF 20 TON LONDON MIA DAND | 703<br>703                              | 56 000 | NOR APPLICABLE | .00            | 00/00/00 |
| 01037          | 313        |            | TRAIDER PROUMUE 20 ION DONDOT W/O KAMP   | FH15025                                 | 36,000 | NOT APPLICABLE | 1,010.19       | 22/22/22 |
| 22032          | خدد        | 02         | IRAIDAT TRAID AING SMADD                 | TIVOOT05ICWT03184                       | 12,500 | NOL ABBUICABPE | 6,321.12       | TT/0T/85 |

----ACQUISITION-----

COST

DATE

FUEL.....

GVW

PERIOD: 07/01/07 THRU 06/30/08

E/U ALTERNATIVE FUEL REPORT BY FUEL TYPE 9/10/08

HIGHWAYS DIVISION - OAHU DISTRICT

.. ×' .

EQUIPMENT

91812 593

PERIOD: 07/01/07 THRU 06/30/08

~ .... .

|        |     |                                           |                    |         |                  | ACQUIS     | ITION    |
|--------|-----|-------------------------------------------|--------------------|---------|------------------|------------|----------|
| EQUIPN | ENT | DESCRIPTION                               | SERIAL NÚMBER      | . GVW   | FUEL             | COST       | DATE     |
| 91832  | 113 | 82 TRAILER: TRAIL KING SMALL              | 1TKU01625CM103196  | 12,500  | NOT APPLICABLE   | 4,321.12   | 11/01/82 |
| 91832  | 115 | 84 TRAILER: EAGER BEAVER UTILITY          | 1120TL10XES030032  | 7,200   | NOT APPLICABLE   | .00        | 10/01/84 |
| 91832  | 117 | 86 TRAILER: MANNS WELDING UTILITY SCALE   | TL648              | 0       | NOT APPLICABLE   | 12,420.00  | 09/01/86 |
| 91832  | 118 | 88 TRAILER: HOMEMADE UTILITY              | SOH022588HON       | 0       | · NOT APPLICABLE | 2,855.00   | 03/01/88 |
| 91832  | 119 | 87 TRAILER: ZIEMAN TILT                   | 12CT27E20H2P13858  | 14,000  | NOT APPLICABLE   | 5,662.62   | 05/01/89 |
| 91832  | 120 | 89 TRAILER: CALKINS BOAT                  | 1CXBP1413KS910653  | 0       | NOT APPLICABLE   | 427.08     | 06/01/89 |
| 91832  | 125 | 66 TRAILER: STEVENS MFG.CO.CARGO          | 3801               | 0       | NOT APPLICABLE   | 150.00     | 09/01/90 |
| 91832  | 126 | 93 TRAILER: TRAILEVATOR UTILITY           | 1T9ME1419PM199185  | 4,680   | NOT APPLICABLE   | 6,408.35   | 10/01/93 |
| 91832  | 127 | 93 TRAILER: ZIEMAN UTILITY TILT MOD-2310  | 12C729B25P2P17467  | 22,500  | NOT APPLICABLE   | .00        | 12/01/93 |
| 91832  | 128 | 94 TRAILER: W/SKID RESISTANCE EQUIPMENT   | M1270-082          | 0       | NOT APPLICABLE   | 183,874.00 | 02/01/95 |
| 91832  | 129 | 96 TRAILER: (HOMEMADE)                    |                    | 0       | NOT APPLICABLE   | 1.00       | 02/01/96 |
| 91832  | 130 | 96 TRAILER: SPECTRUM SCALE LT-2900        | 189EC1613TH364445  | 0       | NOT APPLICABLE   | 16,110.93  | 12/01/96 |
| 91832  | 131 | 96 TRAILER: SPECTRUM SCALE LT-2900        | 1S9EC1615TR364446  | 0       | NOT APPLICABLE   | 16,110.93  | 12/01/96 |
| 91832  | 132 | 96 TRAILER: BOBCAT SHOPBUILT BCT-16-7500  | 1S9BS2126TH364435  | 0       | NOT APPLICABLE   | 6,250.00   | 12/01/96 |
| 91832  | 133 | 97 TRAILER: SHOPBUILT UTILITY             | 1S9US121XVH364555  | 0       | NOT APPLICABLE   | 885.41     | 06/01/97 |
| 91832  | 134 | 97 TRAILER: SHOPBUILT UTILITY             | 1S9US1212VH364556  | 0       | NOT APPLICABLE   | 885.41     | 06/01/97 |
| 91832  | 135 | 98 TRAILER: WEIGHT SCALE                  | EC161XVH364302     | 0       | NOT APPLICABLE   | 17,587.38  | 06/01/98 |
| 91832  | 136 | 97 TRAILER WEIGHT SCALE SHOPBLT LODEC3030 | 1S9EC1611VH36403   | 0       | NOT APPLICABLE   | 17,014.47  | 06/01/97 |
| 91832  | 137 | 98 TRAILER: INTERNATIONAL BW508           | 1ZFUF0818WB001623  | 0       | NOT APPLICABLE   | 2,520.00   | 06/01/98 |
| 91832  | 138 | 98 TRAILER: SPECTRUM LAWNMOWER T3000      | 1S9LS1828WH364459  | 5,000   | NOT APPLICABLE   | 5,800.00   | 06/01/98 |
| 91832  | 139 | 98 TRAILER: SPECTRUM LAWNMOWER T3000      | 1S9LS1826WH364460  | 5,000   | NOT APPLICABLE   | 5,800.00   | 06/01/98 |
| 91832  | 140 | 98 TRAILER: SPECTRUM LAWNMOWER T3000      | 1S9LS1824WH364461  | 5,000   | NOT APPLICABLE   | 5,800.00   | 06/01/98 |
| 91832  | 141 | 99 TRAILER: ZIEMAN UTILITY #8012 SPL      | 1ZCE18522XZP20671  | 8,300   | NOT APPLICABLE   | 6,508.30   | 06/01/99 |
| 91832  | 142 | 99 TRAILER: ZIEMAN UTILILY #8012 SPL      | 1ZCE18S24XZP20672  | 8,300   | NOT APPLICABLE   | 6,508.29   | 06/01/99 |
| 91832  | 143 | 99 TRAILER: ZIEMA UTILITY #8012 SPL       | 1ZCE18S26XZP20673  | 8,300   | NOT APPLICABLE   | 6.508.00   | 06/01/99 |
| 91832  | 144 | 99 TRAILER: SPECTRUM BOBCAT MOD. 2580     | 1S9BS2420XH364108  | 0       | NOT APPLICABLE   | 7,276.00   | 06/01/99 |
| 91832  | 145 | 99 TRAILER: SPECTRUM LAWNMOWER            | 1S9LS1828XH364110  | 4,980   | NOT APPLICABLE   | 5.800.00   | 06/01/99 |
| 91832  | 146 | 99 TRAILER: CHILTON UTILITY UT48155-1     | 14DAC0810XC000231  | 1,500   | NOT APPLICABLE   | 2,200.00   | 06/01/99 |
| 91832  | 148 | 00 TRAILER: SPECTRUM LAWNMOWER T-3000     | 189L51826YH364107  | 5,280   | NOT APPLICABLE   | 6,249,96   | 06/01/00 |
| 91832  | 149 | 00 TRAILER: BUTLER FLAT BED LT-812-DH     | 00-2059-2250LB     | B,500   | NOT APPLICABLE   | 5 168,75   | 06/01/00 |
| 91832  | 150 | 00 TRAILER: SPECTRUM BOBCAT BCT 16-12000  | 1S9BC2320YH364111  | 12,000  | NOT APPLICABLE   | 8,749.94   | 06/01/00 |
| 91832  | 151 | 00 TRAILER: SPECTRUM BOBCAT               | 1S9BC2322YH364112  | 12,000  | NOT APPLICABLE   | 8,749.94   | 06/01/99 |
| 91832  | 152 | 00 TRAILER: CARRY-ON UTILITY 5X8G         | 4YMUK0813YH042326  | . 0     | NOT APPLICABLE   | 2.864.68   | 06/01/00 |
| 91832  | 153 | 00 TRAILER: CARRY-ON UTILITY 5X8G         | 4YMUK0815YH042327  | 0       | NOT APPLICABLE   | 2,864.68   | 06/01/00 |
| 91832  | 154 | 01 TRAILER: ZIEMAN UTILITY                | 1ZCE18\$2712P23136 | · 8,300 | NOT APPLICABLE   | 8.958.28   | 06/01/01 |
| 91832  | 155 | 01 TRAILER: ZIEMAN TILT 1157              | 1ZCT21T261ZP23378  | 14.000  | NOT APPLICABLE   | 8,609,32   | 06/01/01 |
| 91832  | 156 | 02 TRAILER: SPECTRUM LAWMMONER            | 18908182018364193  | 5,440   | NOT APPLICABLE   | 7,291,62   | 03/25/03 |
| 91832  | 157 | 03 TRAILER: ZIEMAN UTILITY                | 12CE1852332P24562  | 8,300   | NOT APPLICABLE   | 6.770.79   | 12/09/03 |
| 91832  | 159 | 05 SCALES ELECTRONIC AXLE W/TRAILER       |                    | 0       | NOT APPLICABLE   | 27,505.00  | 09/22/06 |
| 91832  | 160 | 05 SCALES ELECTRONIC AXLE W/TRAILER       |                    | 0       | NOT APPLICABLE   | 27.505.00  | 09/22/06 |
| 91842  | 123 | 75 WELDER: LINCOLN ARC                    | 4795022            | 0       | NOT APPLICABLE   | 3.121.00   | 06/01/97 |
| 91842  | 230 | 96 ERADICATOR, ROBIN EH 17                | 1098152            | 0       | NOT APPLICABLE   | 7.209.00   | 12/01/96 |
| 91842  | 231 | 96 VACUUM: CLEANER, NELFISK GS83          | 960529-2064        | 0       | NOT APPLICABLE   | 4,923,00   | 12/01/96 |
| 91842  | 237 | 98 OPEN RADAR SPEED MONITOR UNIT          | 4AGAU095XWC027173  | Ó       | NOT APPLICABLE   | 9.765.00   | 06/01/98 |
| 91842  | 238 | 98 OPEN RADAR SPEED MONITOR UNIT          | 4AGA109S1WC027174  | ő       | NOT APPLICABLE   | 9 765.00   | 06/01/98 |
| 91842  | 247 | 99 POST POUNDER, DANUSER MODEL MD-6       | 11827              | ő       | NOT APPLICABLE   | 4 718 71   | 06/01/99 |
| 91842  | 248 | 98 CART, EZ-GO GOLF CARGO CARRIERS #875E  | •••••              | ň       | NOT APPLICARLE   | 6.236.92   | 06/01/98 |
| 91842  | 249 | 98 CART, EZ-GO GOLF CARGO CARRIERS #875E  |                    | ۰<br>۵  | NOT APPLICANLE   | 6.236.92   | 06/01/98 |
| 91842  | 250 | 98 CART, EZ-GO GOLF CARGO CARRIERS #875E  | 21675              | ň       | NOT ADDI.ICARLE  | 6 226 02   | 05/01/00 |
| 91842  | 256 | 97 MIXER: BETONIERA WORKMAN 250 CONCEPTE  | 0000138311         | ۰<br>۸  | NOT APPLICABLE   | 2 080 00   | 06/01/07 |
| 91842  | 264 | 99 MONITOR: MIGHTY MOVER SPEED CONTROL    | 41631111127002046  | 2.000   | NOT ADDITOADID   | 10 000.00  | 06/01/00 |
|        |     |                                           | THENOILIANCON 2740 | 21000   | NOT AFENICADNA   |            | 00/01/99 |
|        |     |                                           |                    |         |                  |            |          |
|        |     | _                                         |                    |         |                  |            |          |

## PERIOD: 07/01/07 THRU 06/30/08

....

|        |     |                                            |                   |       |                | ACQUISI        | TION     |
|--------|-----|--------------------------------------------|-------------------|-------|----------------|----------------|----------|
| EQUIPM | ENT | DESCRIPTION                                | SERIAL NUMBER     | GVW   | FUEL           | COST           | DATE     |
| 91842  | 265 | 99 MONITOR: MIGHTY MOVER SPEED CONTROL     | 4AGAU1114XC029947 | 2,000 | NOT APPLICABLE | 10.020.77      | 06/01/99 |
| 91842  | 286 | 02 TRAILER: ITCP MTD SPEED CONTROL MONITOR | 40XK111S02A0007   | 2,000 | NOT APPLICABLE | 11,999.00      | 09/12/02 |
| 91842  | 287 | 02 TRAILER: ITCP MTD SPEED CONTROL MONITOR | 40XK111S22A020008 | 2,000 | NOT APPLICABLE | 11,999.00      | 09/12/02 |
| 91842  | 309 | 05 ARROWBOARD WANCO W/TRAILER WTSP75-LSAC  | 5F11S101351000    | 0     | NOT APPLICABLE | 7,830.00       | 09/22/06 |
| 91842  | 310 | 05 ARROWBOARD WANCO W/TRAILER WTSP75-LSAC  | 5F118551000458    | 0     | NOT APPLICABLE | 7,830.00       | 09/22/06 |
| 91842  | 313 | 06 WELDER LINCOLN TIG K1828-1              | U1060202431       | 0     | NOT APPLICABLE | 17,580.00      | 05/01/07 |
| 91842  | 315 | 06 POT PREMELTER TRANTEX THERMOPLASTIC     | 000504/000505     | 0     | NOT APPLICABLE | 133,702.00     | 02/16/07 |
| 91842  | 319 | 06 VACUUM EDCO 18 GAL DR VAC 250           | 061814230         | 0     | NOT APPLICABLE | 8,705.94       | 02/16/07 |
| 91842  | 321 | 07 MIXER STEEL DRUM CONCRETE WHITEMAN      | C2752167          | 0     | NOT APPLICABLE | 3,508.00       | 12/13/07 |
| 91842  | 322 | 07 MIXER STEEL DRUM CONCRETE WHITEMAN      | C2752132          | 0     | NOT APPLICABLE | 3,508.00       | 12/13/07 |
| 91842  | 323 | 07 MACHINE STRIPING TRANTEX THERMOPLASTIC  | K8756             | 0     | NOT APPLICABLE | 44,965.00      | 04/23/08 |
|        |     |                                            |                   |       |                | FUEL TYPE TOTA | AL .     |

|                                  | MODEL | <b>GROSS VEHICLE</b> | VEHICLE FUEL  | ACTUAL IN-USE   | FUEL<br>CONSUMPTION | СІТҮ | ΗWΥ |
|----------------------------------|-------|----------------------|---------------|-----------------|---------------------|------|-----|
| VEHICLE DESCRIPTION              | YEAR  | WEIGHT RATING        | CONFIGURATION | VEHICLE MILEAGE | (GAL)               | MPG  | MPG |
| FORD AEROSTAR VAN                | 97    | -                    | Gasoline      | 12,329          | 599.4               | 17   | 23  |
| CHEVY LUMINA                     | 93    | -                    | Gasoline      | 16              | 0.0                 | 20   | 29  |
| JEEP CHEROKEE                    | 98    | 1                    | Gasoline      | 8,611           | 478.4               | 18   | 20  |
| VAN CHEV ASTRO PASSENGER         | 93    | 1                    | Gasoline      | 3,818           | 224.6               | 15   | 19  |
| VAN CHEV ALUM CUBE               | 93    | 1                    | Gasoline      | 4,845           | 255.0               | 18   | 24  |
| VAN CHEV ALUM CUBE               | 93    | 1                    | Gasoline      | 20,286          | 1,127.0             | 18   | 24  |
| VAN CHEV ALUM HIGH CUBE          | 66    | L                    | Gasoline      | 25,690          | 1,427.2             | 18   | 25  |
| VAN CHEV 15 PASSENGER            | 90    | 2                    | Gasoline      | 18,531          | 1,158.6             | 16   | 20  |
| VAN CHEV 15 PASSENGER            | 90    | 2                    | Gasoline      | 16,327          | 1,816.5             | 16   | 20  |
| VAN CHEV 15 PASSENGER            | 20    | 2                    | Gasoline      | 8,788           | 982.3               | 19   | 26  |
| VAN FORD 15 PASSENGER            | 01    | 2                    | Gasoline      | 8,246           | 434.0               | 19   | 26  |
| VAN CHEV 15 PASSENGER            | 08    | 2                    | Gasoline      | 6,295           | 301.4               | 19   | 26  |
| VAN FORD 15 PASSENGER            | 66    | 2                    | Gasoline      | 34,900          | 1,745.0             | 19   | 26  |
| VAN DODGE 12 PASSENGER           | 26    | 2                    | Gasoline      | 14,353          | 755.4               | 19   | 26  |
| VAN DODGE 12 PASSENGER           | 97    | 2                    | Gasoline      | 15,924          | 838.1               | 19   | 26  |
| P/U CHEVY S-10                   | 84    | 1                    | Gasoline      | 10,984          | 549.2               | 15   | 20  |
| VAN FORD ECONOLINE CARGO         | 66    | -                    | Gasoline      | 6,628           | 473.4               | 15   | 20  |
| VAN FORD                         | 97    | 1                    | Gasoline      | 1,550           | 229.7               | 15   | 20  |
| TRUCK CHEVY/VAN DIESEL           | 91    | 2                    | Diesel        | 7,574           | 473.4               | 16   | 21  |
| P/U DODGE                        | 98    | 2                    | Gasoline      | 5,898           | 549.2               | 13   | 17  |
| VAN FORD                         | 99    | 1                    | Gasoline      | 3,446           | 229.7               | 15   | 20  |
| VAN FORD 15 PASSENGER            | 97    | 2                    | Gasoline      | 6,628           | 473.4               | 14   | 19  |
| VAN DODGE                        | 00    | 2                    | Gasoline      | 10,435          | 549.2               | 19   | 26  |
| CHEVY VAN                        | 97    | 2                    | Gasoline      | 7,574           | 473.4               | 16   | 20  |
| CHEVY VAN                        | 97    | 2                    | Gasoline      | 3,675           | 229.7               | 16   | 20  |
| SDN CHEV CELEBRITY 4DR           | 88    | 1                    | Gasoline      | 0               | 0.0                 | 24   | 31  |
| SDN TOYOTA COROLLA 4DR           | 03    | -                    | Gasoline      | 1,791           | 80.3                | 30   | 38  |
| FORD TAURUS 4DR                  | 05    | -                    | Gasoline      | 131             | 22.1                | 20   | 27  |
| VAN DODGE                        | 90    | 2                    | Gasoline      | 19,460          | 973.0               | 19   | 26  |
| VAN GMC M15Z                     | 90    | 2                    | Gasoline      | 585             | 45.0                | 13   | 15  |
| P/U TRUCK FORD F-250             | 91    | 2                    | Gasoline      | 4,043           | 512.0               | 11   | 16  |
| SDN CHEVY CAPRICE                | 92    | -                    | Gasoline      | 1,645           | 91.4                | 18   | 26  |
| VAN FORD CLUBWAGON               | 97    | 1                    | Gasoline      | 13,700          | 978.6               | 14   | 18  |
| VAN FORD AEROSTAR                | 97    | 1                    | Gasoline      | 12,847          | 1,074.0             | 17   | 23  |
| VAN DODGE                        | 91    | 2                    | Gasoline      | 2,315           | 307.9               | 19   | 26  |
| P/U DODGE RAM                    | 91    | 2                    | Gasoline      | 435             | 58.6                | 13   | 17  |
| SUV CHEV BLAZER                  | 93    | 2                    | Gasoline      | 558             | 42.9                | 13   | 16  |
| STATION WAGON CHEV CELEBRITY     | 90    | -                    | Gasoline      | 5,817           | 578.0               | 11   | 16  |
| VAN FORD 3 DR E-350 15 PASSENGER | 03    | 2                    | Gasoline      | 23,608          | 1,192.0             | 14   | 18  |
| P/U TRUCK CHEVY                  | 91    | -                    | Gasoline      | 5,068           | 298.1               | 15   | 20  |
| CHEVY IMPALA 4DSD                | 07    | -                    | Gasoline      | 4,364           | 268.2               | 20   | 30  |
| SDN CHEVY 4DSD CAPRICE           | 90    | 1                    | Gasoline      | 7,216           | 601.3               | 12   | 16  |

| VEHICLE DESCRIPTION    | MODEL | GROSS VEHICLE<br>WEIGHT RATING | VEHICLE FUEL<br>CONFIGURATION | ACTUAL IN-USE<br>VEHICLE MILEAGE | FUEL<br>CONSUMPTION<br>(GAL) | CITY<br>MPG | НWY<br>МРG |
|------------------------|-------|--------------------------------|-------------------------------|----------------------------------|------------------------------|-------------|------------|
| SDN OLDS CIERA         | 96    | -                              | Gasoline                      | 493                              | 35.2                         | 14          | 18         |
| SDN CHEVY CORSICA      | 95    | 1                              | Gasoline                      | 505                              | 36.1                         | 14          | 18         |
| P/U TRUCK CHEVY        | 94    | -                              | Gasoline                      | 1,754                            | 125.3                        | 14          | 19         |
| VAN CHEVY              | 07    | 1                              | Gasoline                      | 38,999                           | 2,999.9                      | 12          | 16         |
| VAN CHEVY              | 07    | 1                              | Gasoline                      | 47,253                           | 3,375.2                      | 12          | 16         |
| P/U DODGE              | 86    | 2                              | Gasoline                      | 5,928                            | 456                          | 13          | 17         |
| VAN CHEV 12 PASSENGER  | 92    | 2                              | Gasoline                      | 1,624                            | 336                          | 16          | 21         |
| P/U TRUCK DODGE        | 82    | 2                              | Gasoline                      | 6,552                            | 504                          | 13          | 17         |
| VAN CHEV               | 98    | 2                              | Gasoline                      | 7,296                            | 456                          | 16          | 20         |
| VAN CHEV               | 98    | 2                              | Gasoline                      | 37,440                           | 2,340                        | 16          | 20         |
| VAN GMC                | 89    | 2                              | Gasoline                      | 5,304                            | 408                          | 13          | 15         |
| SDN CHEV 4DR           | 88    | 1                              | Gasoline                      | 9,108                            | 396                          | 23          | 32         |
| P/U TRUCK CHEV         | 78    | 1                              | Gasoline                      | 7,200                            | 360                          | 20          | 26         |
| BUS DODGE 15 PASSENGER | 87    | 2                              | Gasoline                      | 3,900                            | 300                          | 13          | 16         |
| P/U CHEV               | 87    | +                              | Gasoline                      | 6,000                            | 300                          | 20          | 26         |
| SDN CHEV 4DR           | 91    | 1                              | Gasoline                      | 6,624                            | 276                          | 23          | 32         |
| SDN CHEV 4DR           | 87    | +                              | Gasoline                      | 21,804                           | 948                          | 23          | 32         |
| CHEVY BUS 20 PASSENGER | 94    | 2                              | Gasoline                      | 15,120                           | 1,008                        | N/A         | N/A        |
| FORD ECONOLINE VAN     | 98    | 1                              | Gasoline                      | 8,280                            | 552                          | 15          | 20         |
| CHEVY IMPALA           | 02    | 1                              | Gasoline                      | 7,980                            | 420                          | 19          | 29         |
| CHEVY IMPALA           | 03    | 1                              | Gasoline                      | 28,980                           | 1,380                        | 21          | 32         |
| CHEVY ASTRO VAN        | 98    | 2                              | Gasoline                      | 27,840                           | 1,740                        | 16          | 20         |
| SDN OLDS CIERA 4DR     | 94    | 1                              | Gasoline                      | 0                                | 0                            | N/A         | N/A        |
| OLDS ALERO             | 02    | -                              | Gasoline                      | 7,584                            | 316.0                        | 24          | 32         |
| CHEVY IMPALA 4DSD      | 04    | +                              | Gasoline                      | 6,880                            | 295.0                        | 21          | 32         |
| FORD TAURUS 4DSD       | 06    | 1                              | Gasoline                      | 4,141                            | 268.0                        | 18          | 24         |
| DODGE INTREPID         | 02    | 1                              | Gasoline                      | 1,287                            | 69.0                         | 20          | 27         |
| CHEVY IMPALA 4DSD      | 04    | -                              | Gasoline                      | 06                               | 3.0                          | 21          | 32         |
| VAN CHEVY ASTRO        | 92    | +                              | Gasoline                      | 48,090                           | 3,005.0                      | 16          | 20         |
| FORD EXPLORER XLT      | 05    | 1                              | Gasoline                      | 33,958                           | 1,907.0                      | 16          | 21         |
| CHEVY IMPALA           | 07    | -                              | Gasoline                      | 2,568                            | 111.0                        | 21          | 32         |
| DODGE CARAVAN          | 07    | -                              | Gasoline                      | 2,621                            | 172.0                        | 20          | 26         |
| CHEVY CAPRICE SDN      | 93    | -                              | Gasoline                      | 378                              | 18.0                         | 18          | 26         |
| SUBARU SDN 4DR         | 91    | -                              | Gasoline                      | 0                                | 0.0                          | 20          | 26         |
| VAN CHEV 12 PASSENGER  | 97    | 2                              | Gasoline                      | 4,121                            | 206.0                        | 16          | 20         |
| TRUCK CHEV CREW CAB    | 98    | 2                              | Gasoline                      | 4,306                            | 266.0                        | 13          | 16         |
| VAN CHEV 15 PASSENGER  | 98    | 2                              | Gasoline                      | 4,928                            | 369.0                        | 16          | 21         |
| VAN CHEV 12 PASSENGER  | 97    | 2                              | Gasoline                      | 3,088                            | 193.0                        | 16          | 21         |
| SDN SR5 TOYOTA 2 DR    | 86    | -                              | Gasoline                      | 4,320                            | 239.0                        | 18          | 20         |
| SUV CHEV BLAZER 2DR    | 06    | 2                              | Gasoline                      | 4,922                            | 549.0                        | 13          | 16         |
| BUS FORD 15 PASSENGER  | 91    | e                              | Gasoline                      | 8,430                            | 562.0                        | N/A         | N/A        |
| S/W FORD 2DR           | 87    | ~                              | Gasoline                      | 10,600                           | 424.0                        | 21          | 27         |

| VEHICLE DESCRIPTION               | MODEL<br>VFAR | GROSS VEHICLE<br>WEIGHT RATING | VEHICLE FUEL<br>CONFIGURATION | ACTUAL IN-USE<br>VEHICI F MII FAGF | FUEL<br>CONSUMPTION | CITY<br>MPG | ЧWY |
|-----------------------------------|---------------|--------------------------------|-------------------------------|------------------------------------|---------------------|-------------|-----|
| S/W FORD                          | 89            | -                              | Gasoline                      | 8.119                              | 353.0               | 21          | 27  |
| TRUCK INT'L HARVESTER             | 80            | 5                              | Diesel                        | 2,478                              | 177.0               | N/A         | N/A |
| TRUCK GMC FLTBD STK               | 83            | 2                              | Gasoline                      | 1,937                              | 149.0               | N/A         | N/A |
| P/U TRUCK FORD                    | 84            | -                              | Gasoline                      | 1,744                              | 109.0               | 15          | 20  |
| TRUCK CHEV FLTBD                  | 87            | 2                              | Gasoline                      | 2,108                              | 124.0               | N/A         | N/A |
| TRUCK INT'L                       | 87            | 2                              | Diesel                        | 20,275                             | 6,352.0             | N/A         | N/A |
| TRUCK FORD CREWCAB                | 92            | -                              | Diesel                        | 401                                | 25.0                | 16          | 20  |
| TRUCK GMC DUMP                    | 83            | 8                              | Diesel                        | 3,294                              | 549.0               | N/A         | N/A |
| TRUCK FORD CHAS. AERIAL           | 90            | 1                              | Gasoline                      | 414                                | 23.0                | A/N         | N/A |
| TRUCK FORD DUMP                   | 89            | 8                              | Diesel                        | 1,254                              | 66.0                | A/N         | N/A |
| TRUCK FORD DUMP                   | 89            | 8                              | Diesel                        | 650                                | 26.0                | A/N         | N/A |
| P/U TRUCK CHEV 3/4T               | 82            | 1                              | Gasoline                      | 3,151                              | 210.0               | 15          | 20  |
| P/U TRUCK FORD F150               | 82            | Ļ                              | Gasoline                      | 13,821                             | 813.0               | 21          | 22  |
| P/U TRUCK FORD                    | 80            | 1                              | Gasoline                      | 4,369                              | 257.0               | 17          | 22  |
| BUS INT'L 72 PASSENGER            | 88            | N/A                            | Diesel                        | 11,296                             | 549.0               | A/N         | N/A |
| BUS INT'L 72 PASSENGER            | 84            | N/A                            | N/A                           | 855                                | 57.0                | N/A         | N/A |
| BUS INTL 72 PASSENGER             | 82            | N/A                            | N/A                           | 6,588                              | 549.0               | N/A         | N/A |
| BUS CHEV 60 PASSENGER             | 87            | N/A                            | N/A                           | 5,490                              | 549.0               | N/A         | N/A |
| SUV CHEV BLAZER                   | 02            | -                              | Diesel                        | 6,302                              | 375.0               | 13          | 16  |
| SUV CHEV BLAZER                   | 91            | -                              | Gasoline                      | 12,788                             | 590.0               | 13          | 16  |
| SUV CHEV BLAZER                   | 84            | -                              | Gasoline                      | 1,001                              | 77.0                | 13          | 16  |
| S/W CHEV                          | 94            | -                              | Gasoline                      | 4,692                              | 262.0               | 21          | 27  |
| SUV CHEV BLAZER                   | 84            | -                              | Diesel                        | 8,235                              | 549.0               | 13          | 16  |
| VAN FORD CARGO                    | 87            | 1                              | Gasoline                      | 6,390                              | 426.0               | 15          | 20  |
| VAN FORD CARGO                    | 87            | -                              | Gasoline                      | 6,588                              | 549.0               | 15          | 20  |
| P/U TRUCK FORD                    | 95            | 2                              | Gasoline                      | 6,094                              | 554.0               | 11          | 16  |
| P/U TRUCK FORD                    | 95            | 2                              | Gasoline                      | 3,879                              | 339.0               | 11          | 16  |
| TRUCK TRAC PETERBILT              | 83            | N/A                            | Diesel                        | 9,483                              | 6,564.0             | N/A         | N/A |
| P/U CHEV UTILITY                  | 90            | -                              | Gasoline                      | 2,603                              | 257.0               | 15          | 20  |
| TRUCK KAISER STAKE BODY           | 66            | N/A                            | Gasoline                      | 405                                | 27.0                | N/A         | N/A |
| TRUCK INT'L STAKE MODEL 1624      | 80            | N/A                            | Diesel                        | 1,037                              | 61.0                | N/A         | N/A |
| SUV FORD BRONCO 2DR               | 92            | 2                              | Gasoline                      | 8,654                              | 528.0               | 14          | 18  |
| TRUCK INTL HARVESTER MODEL S-1600 | 80            | 5                              | Gasoline                      | 198                                | 11.0                | N/A         | N/A |
| BUS INTL 72 PASSENGER             | 78            | N/A                            | N/A                           | 465                                | 31.0                | N/A         | N/A |
| P/U TRUCK CHEV                    | 92            | 1                              | Gasoline                      | 15,041                             | 958.0               | 15          | 20  |
| BUS FORD 15 PASSENGER             | 00            | 3                              | Gasoline                      | 8,784                              | 549.0               | N/A         | N/A |
| BUS FORD 15 PASSENGER             | 00            | 3                              | Gasoline                      | 65,700                             | 3,650.0             | N/A         | N/A |
| TRUCK CHEV 1/2T                   | 93            | -                              | Gasoline                      | 8,235                              | 549.0               | 15          | 20  |
| VAN CHEV 15 PASSENGER             | 01            | 2                              | Gasoline                      | 14,150                             | 1,295.0             | 13          | 16  |
| VAN FORD CARGO                    | 81            | ~                              | Gasoline                      | 1,560                              | 104.0               | 15          | 20  |
| VAN CHEV 10                       | 94            | ~                              | Gasoline                      | 5,464                              | 549.0               | 15          | 20  |
| VAN CHEV 15 PASSENGER             | 03            | 2                              | Gasoline                      | 10,256                             | 641.0               | 13          | 16  |

|                               | MODEL    | GROSS VEHICLE | VEHICLE FUEL  | ACTUAL IN-USE |         | CITY | ΥWH |
|-------------------------------|----------|---------------|---------------|---------------|---------|------|-----|
|                               | YEAK     | WEIGHI KATING | CONFIGURATION |               | (GAL)   | MPG  | MPG |
|                               | ŝ        |               | Gasoline      | (1/1          | 1.18.2  | 2    | 24  |
| TOYOTA CAMRY                  | 07       | -             | Gasoline      | 1,732         | 112.3   | 24   | 34  |
| FORD F-350 PICKUP             | 01       | 2             | Gasoline      | 7,589         | 583.8   | N/A  | N/A |
| FORD F-350 PICKUP             | 03       | 2             | Gasoline      | 5,490         | 678.9   | N/A  | N/A |
| FORD F-350 PICKUP             | 03       | 2             | Gasoline      | 7,595         | 874.9   | N/A  | N/A |
| P/U TRUCK FORD                | 92       | 1             | Gasoline      | 1,179         | 69.4    | 17   | 22  |
| TRUCK CHEV                    | 63       | 1             | Gasoline      | 4,224         | 264.0   | 15   | 20  |
| VAN CHEV EXPRESS 15 PASSENGER | 86       | 2             | Gasoline      | 1,813         | 235.0   | 16   | 22  |
| SDN CHEV MALIBU               | 66       | -             | Gasoline      | 423           | 38.6    | 23   | 32  |
| VAN CHEV EXPRESS              | 66       | 2             | Gasoline      | 695           | 172.5   | 16   | 20  |
| SDN FORD MERCURY 4DR          | 66       | 1             | Gasoline      | 3,339         | 232.2   | 25   | 34  |
| VAN CHEV 15 PASSENGER         | 10       | 2             | Gasoline      | 13,974        | 822.0   | 16   | 22  |
| ΤΟΥΟΤΑ ΤΑCOMA                 | 90       | -             | Gasoline      | 866           | 76.3    | 20   | 27  |
| SUV FORD EXPEDITION           | 98       | 2             | Gasoline      | 2,845         | 218.9   | 13   | 18  |
| VAN TOYOTA SIENNA-7 PASSENGER | 04       | -             | Gasoline      | 2,382         | 125.4   | 19   | 27  |
| P/U TRUCK FORD F-150          | 86       | 1             | Gasoline      | 1,336         | 78.6    | 17   | 22  |
| HONDA ACCORD                  | 01       | 1             | Gasoline      | 6,985         | 303.7   | 23   | 30  |
| P/U TRUCK FORD F-150          | 02       | 1             | Gasoline      | 7,335         | 431.5   | 17   | 22  |
| HONDA ODYSSEY                 | 07       | 1             | Gasoline      | 3,791         | 236.9   | 16   | 20  |
| MINI COOPER S                 | 05       | 1             | Gasoline      | 4,007         | 160.3   | 25   | 32  |
| TOYOTA 4RUNNERMPVH            | 06       | 1             | Gasoline      | 12,542        | 696.8   | 18   | 22  |
| SDN TOYOTA COROLLA            | 98       | 1             | Gasoline      | 6,345         | 211.5   | 30   | 38  |
| SUV CHEV TAHOE                | 66       | 2             | Gasoline      | 3,027         | 252.3   | 12   | 16  |
| SUV CHEV BLAZER               | 86       | 2             | Gasoline      | 18,921        | 1,455.5 | 13   | 16  |
| P/U FORD RANGER               | 66       | 1             | Gasoline      | 1,628         | 95.8    | 17   | 22  |
| SUV CHEV BLAZER SILVER        | 26       | 2             | Gasoline      | 11,131        | 856.3   | 13   | 16  |
| SUV CHEV BLAZER               | 91       | 2             | Gasoline      | 292           | 58.7    | 13   | 16  |
| SUV CHEV BLAZER AUTUMNWOOD    | 96       | 2             | Gasoline      | 5,760         | 440.8   | 13   | 16  |
| INFINITI G35                  | 03       | +             | Gasoline      | 6,267         | 329.8   | 19   | 26  |
| SDN TOYOTA COROLLA            | 03       | 1             | Gasoline      | 2,063         | 92.8    | 30   | 38  |
| FORD TAURUS                   | 05       | 1             | Gasoline      | 1,967         | 131.4   | 19   | 25  |
| TRUCK STAKE INTL              | 93       | N/A           | N/A           | 0             | 0.0     | N/A  | N/A |
| VAN CHEV                      | 92       | 2             | Gasoline      | 1,474         | 133.5   | 16   | 20  |
| P/U TRUCK CHEV 1/2            | 93       | 1             | Gasoline      | 534           | 35.6    | 15   | 20  |
| VAN FORD                      | <u> </u> | 1             | Gasoline      | 0             | 0.0     | 17   | 23  |
| VAN FORD                      | 85       | 1             | Gasoline      | 446           | 72.3    | 17   | 23  |
| SDN FORD CROWN VICTORIA       | 91       | 1             | Gasoline      | 0             | 0.0     | 18   | 25  |
| VAN FORD                      | 06       | 1             | Gasoline      | 9,480         | 474.0   | 15   | 20  |
| SDN CHEV CELEBRITY 4DR        | 89       | 1             | Gasoline      | 1,802         | 63.1    | 23   | 30  |
| TRUCK CHEV STAKE              | 93       | N/A           | N/A           | 2,025         | 147.0   | 15   | 20  |
| VAN CHEV ASTRO WHITE          | 92       | 2             | Gasoline      | 1,531         | 94.2    | 16   | 20  |
| P/U TRUCK FORD                | 00       | 1             | Gasoline      | 6,612         | 334.0   | 15   | 20  |

|                             | MODEL | <b>GROSS VEHICLE</b> | VEHICLE FUEL  | ACTUAL IN-USE   |         | СІТУ | ΥWΗ |
|-----------------------------|-------|----------------------|---------------|-----------------|---------|------|-----|
| VEHICLE DESCRIPTION         | YEAR  | WEIGHT RATING        | CONFIGURATION | VEHICLE MILEAGE | (GAL)   | MPG  | MPG |
| SDN CHEV                    | 86    | ~                    | Gasoline      | 907             | 50.4    | 18   | 26  |
| VAN DODGE                   | 87    | 2                    | Gasoline      | 16,205          | 900.8   | 19   | 26  |
| P/U TRUCK FORD              | 88    | 1                    | Gasoline      | 536             | 89.6    | 15   | 20  |
| VAN CHEV ASTRO WHITE        | 88    | 1                    | Gasoline      | 973             | 118.8   | 15   | 19  |
| VAN CHEV                    | 87    | 2                    | Gasoline      | 2,531           | 212.3   | 16   | 20  |
| VAN GMC MODEL G39K          | 91    | 2                    | Gasoline      | 4,867           | 905.8   | 15   | 19  |
| S/W CHEV 4DR                | 88    | 1                    | Gasoline      | 362             | 15.7    | 23   | 30  |
| P/U TRUCK DODGE             | 91    | 2                    | Gasoline      | 598             | 42.7    | 13   | 17  |
| VAN CHEV 15 PASSENGER       | 98    | 2                    | Gasoline      | 38,296          | 1,526.4 | 16   | 21  |
| VAN CHEV 15 PASSENGER       | 98    | 2                    | Gasoline      | 31,613          | 1,859.6 | 16   | 21  |
| VAN CHEV 15 PASSENGER       | 98    | 2                    | Gasoline      | 16,120          | 1,281.8 | 16   | 21  |
| VAN GMC 15 PASSENGER        | 00    | 2                    | Gasoline      | 14,125          | 1,694.5 | 16   | 21  |
| VAN CHEV 15 PASSENGER       | 02    | 2                    | Gasoline      | 1,896           | 111.5   | 16   | 21  |
| VAN CHEV 15 PASSENGER       | 98    | 2                    | Gasoline      | 10,515          | 657.2   | 16   | 21  |
| VAN FORD 15 PASSENGER       | 95    | 2                    | Gasoline      | 14,860          | 1,031.9 | 14   | 19  |
| VAN FORD                    | 06    | ~                    | Gasoline      | 944             | 171.5   | 15   | 20  |
| CHEVY LUMINA                | 66    | 1                    | Gasoline      | 1,761           | 106.1   | 20   | 29  |
| CHEVY BUS 20 PASSENGER      | 94    | N/A                  | N/A           | 6,271           | 730.4   | N/A  | N/A |
| VAN FORD F-150              | 83    | 1                    | Gasoline      | N/A             | N/A     | 17   | 22  |
| CHEVY SUBURBAN              | 96    | 1                    | Gasoline      | N/A             | N/A     | 12   | 16  |
| CHEVY SUBURBAN              | 66    | 1                    | Gasoline      | N/A             | N/A     | 12   | 16  |
| SDN CHEV CELEBRITY 4DR      | 89    | 1                    | Gasoline      | N/A             | N/A     | 24   | 31  |
| SDN CHEV CAPRICE 4DR        | 92    | 1                    | Gasoline      | N/A             | N/A     | 18   | 26  |
| SDN CHEV CAPRICE 4DR        | 92    | 1                    | Gasoline      | N/A             | N/A     | 18   | 26  |
| SDN CHEV CAPRICE 4DR        | 92    | ٢                    | Gasoline      | N/A             | N/A     | 18   | 26  |
| SDN CHEV CAPRICE 4DR        | 92    | 1                    | Gasoline      | N/A             | N/A     | 18   | 26  |
| P/U TRUCK CHEV 2500         | 88    | ٢                    | Gasoline      | N/A             | N/A     | 20   | 26  |
| P/U TRUCK CHEV S-10         | 91    | 4                    | Gasoline      | N/A             | N/A     | 20   | 26  |
| HUMMER H2                   | 03    | 2                    | Gasoline      | N/A             | N/A     | N/A  | N/A |
| SDN CHEV LUMINA 4DR         | 93    | -                    | Gasoline      | N/A             | N/A     | 20   | 29  |
| TOYOTA TACOMA PKUP TRUCK    | 98    | -                    | Gasoline      | N/A             | N/A     | 20   | 27  |
| FORD TAURUS 4DR SDN         | 05    | -                    | Gasoline      | N/A             | N/A     | 19   | 25  |
| FORD TAURUS 4DR SDN         | 05    | -                    | Gasoline      | N/A             | N/A     | 19   | 25  |
| FORD EXPLORER SUV 2WHEEL DR | 05    | ٢                    | Gasoline      | N/A             | N/A     | N/A  | N/A |
| BUICK LESABRE               | 01    | -                    | Gasoline      | N/A             | N/A     | 19   | 30  |
| P/U TOYOTA TACOMA           | 04    | -                    | Gasoline      | N/A             | N/A     | 20   | 27  |
| VAN DODGE                   | 90    | 2                    | Gasoline      | N/A             | N/A     | 19   | 26  |
| SDN CHEV 4DR                | 90    | -                    | Gasoline      | N/A             | N/A     | 23   | 32  |
| SDN CHEV 4DR                | 90    | -                    | Gasoline      | N/A             | N/A     | 23   | 32  |
| SDN CHEV 4DR                | 90    | -                    | Gasoline      | N/A             | N/A     | 23   | 32  |
| P/U TRUCK DODGE RAMCHARGER  | 91    | -                    | Gasoline      | N/A             | N/A     | N/A  | N/A |
| VAN CHEV                    | 83    | 2                    | Gasoline      | N/A             | N/A     | 16   | 20  |

| VEHICLE DESCRIPTION                    | MODEL<br>YEAR | GROSS VEHICLE<br>WEIGHT RATING | VEHICLE FUEL<br>CONFIGURATION | ACTUAL IN-USE<br>VEHICLE MILEAGE | CONSUMPTION<br>(GAL) | CITY<br>MPG | HWY<br>MPG |
|----------------------------------------|---------------|--------------------------------|-------------------------------|----------------------------------|----------------------|-------------|------------|
| S/W FORD TAURUS                        | 92            | -                              | Gasoline                      | N/A                              | N/A                  | 19          | 25         |
| SDN PONTIAC GRAND PRIX 4DR             | 94            | -                              | Gasoline                      | N/A                              | N/A                  | 19          | 28         |
| SDN FORD CROWN VICTORIA 4DR            | 95            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 97            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| VAN CARGO FORD                         | 86            | -                              | Gasoline                      | N/A                              | N/A                  | 15          | 20         |
| SDN FORD CROWN VICTORIA                | 66            | ~                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 66            | ~                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 66            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 66            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| SDN CHEV CAPRICE 4DR                   | 93            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 26         |
| SDN DODGE DIPLOMAT FD                  | 85            | -                              | Gasoline                      | N/A                              | N/A                  | 16          | 21         |
| SUV CHEV TAHOE                         | 66            | 2                              | Gasoline                      | N/A                              | N/A                  | 12          | 16         |
| SDN CHEVY CAPRICE 4DR                  | 91            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 26         |
| VAN FORD AEROSTAR                      | 93            | -                              | Gasoline                      | N/A                              | N/A                  | 15          | 20         |
| VAN FORD AEROSTAR                      | 93            | -                              | Gasoline                      | N/A                              | N/A                  | 15          | 20         |
| SDN FORD CROWN VICTORIA 4DR            | 00            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| VAN CHEV 12 PASSENGER                  | 01            | 2                              | Gasoline                      | N/A                              | N/A                  | 16          | 21         |
| VAN CHEV 12 PASSENGER                  | 01            | 2                              | Gasoline                      | N/A                              | N/A                  | 16          | 21         |
| FORD TAURUS 4DSD                       | 01            | 1                              | Gasoline                      | N/A                              | N/A                  | 19          | 25         |
| BUS FORD                               | 96            | N/A                            | N/A                           | N/A                              | N/A                  | N/A         | N/A        |
| SDN FORD CROWN VICTORIA                | 02            | -                              | Gasoline                      | N/A                              | N/A                  | 17          | 25         |
| SDN FORD CROWN VICTORIA                | 02            | 1                              | Gasoline                      | N/A                              | N/A                  | 17          | 25         |
| P/U TRUCK FORD RANGER                  | 02            | -                              | Gasoline                      | N/A                              | N/A                  | 17          | 22         |
| P/U TRUCK FORD RANGER                  | 00            | -                              | Gasoline                      | N/A                              | N/A                  | 17          | 22         |
| VAN CHEV                               | 03            | 2                              | Gasoline                      | N/A                              | N/A                  | 16          | 20         |
| FORD CROWN VICTORIA 4 DR               | 03            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| FORD CROWN VICTORIA POLICE INTERCEPTOR | 00            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| CHEV IMPALA POLICE INTERCEPTOR         | 01            | -                              | Gasoline                      | N/A                              | N/A                  | 20          | 30         |
| SUV CHEVY TAHOE                        | 93            | 2                              | Gasoline                      | N/A                              | N/A                  | 12          | 16         |
| FORD CROWN VICTORIA                    | 05            | -                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| FORD CROWN VICTORIA                    | 05            | ~                              | Gasoline                      | N/A                              | N/A                  | 18          | 25         |
| DODGE VAN                              | 98            | 2                              | Gasoline                      | N/A                              | N/A                  | 19          | 26         |
| DODGE VAN                              | 00            | 2                              | Gasoline                      | N/A                              | N/A                  | 19          | 26         |
| DODGE VAN                              | 00            | 2                              | Gasoline                      | N/A                              | N/A                  | 19          | 26         |
| CHEVY VAN                              | 95            | 2                              | Gasoline                      | N/A                              | N/A                  | 16          | 20         |
| CHEVY IMPALA POLICE INTERCEPTOR        | 01            | ٢                              | Gasoline                      | N/A                              | N/A                  | 20          | 30         |
| CHEVY IMPALA POLICE INTERCEPTOR        | 01            | ٢                              | Gasoline                      | N/A                              | N/A                  | 20          | 30         |
| FORD POLICE INTERCEPTOR                | 06            | ٢                              | Gasoline                      | N/A                              | N/A                  | 20          | 30         |
| FORD 4DSD                              | 02            | -                              | Gasoline                      | N/A                              | N/A                  | 19          | 25         |
| OLDS ALERO 4DSD                        | 02            | -                              | Gasoline                      | N/A                              | N/A                  | 24          | 32         |
| CHEVY 4DSD                             | 02            | ۲                              | Gasoline                      | N/A                              | N/A                  | 20          | 29         |
| CHEVY 4DSD                             | 02            | ۰                              | Gasoline                      | N/A                              | N/A                  | 20          | 29         |
| FORD 4DSD                              | 66            | ٢                              | Gasoline                      | N/A                              | N/A                  | 19          | 25         |

| VEHICLE DESCRIPTION                    | MODEL<br>YEAR | GROSS VEHICLE<br>WEIGHT RATING | VEHICLE FUEL<br>CONFIGURATION | ACTUAL IN-USE<br>VEHICLE MILEAGE | FUEL<br>CONSUMPTION<br>(GAL) | CITY<br>MPG | НWY<br>MPG |
|----------------------------------------|---------------|--------------------------------|-------------------------------|----------------------------------|------------------------------|-------------|------------|
| FORD 4DSD                              | 97            | -                              | Gasoline                      | N/A                              | N/A                          | 19          | 25         |
| LINCOLN NAVIGATOR                      | 03            | 2                              | Gasoline                      | A/A                              | N/A                          | 12          | 17         |
| FORD 4DSD                              | 07            | Ļ                              | Gasoline                      | N/A                              | N/A                          | 19          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | 1                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | 1                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | 1                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | -                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | -                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SDN FORD CROWN VICTORIA                | 07            | -                              | Gasoline                      | N/A                              | N/A                          | 18          | 25         |
| SUV TAHOE                              | 02            | 1                              | Gasoline                      | N/A                              | N/A                          | 16          | 18         |
| OLDS ALERO                             | 03            | -                              | Gasoline                      | N/A                              | N/A                          | 16          | 19         |
| SDN FORD CROWN VICTORIA                | 04            | -                              | Gasoline                      | N/A                              | N/A                          | 15          | 20         |
| NISSAN MAXIMA                          | 03            | 1                              | Gasoline                      | N/A                              | N/A                          | 17          | 21         |
| FORD ECONOLINE CLUB VAN                | 05            | 1                              | Gasoline                      | N/A                              | N/A                          | 15          | 20         |
| SDN FORD CROWN VICTORIA                | 05            | 1                              | Gasoline                      | N/A                              | N/A                          | 15          | 20         |
| FORD ECONOLINE CLUB VAN                | 05            | 1                              | Gasoline                      | N/A                              | N/A                          | 15          | 20         |
| SUV CHEV S10 BLAZER                    | 92            | 2                              | Gasoline                      | 3,437                            | 278.0                        | 13          | 16         |
| P/U TRUCK FORD RANGER                  | 83            | 1                              | Gasoline                      | 3,813                            | 224.0                        | 17          | 22         |
| VAN CHEV ASTRO PASSENGER               | 94            | 2                              | Gasoline                      | 4,134                            | 258.0                        | 16          | 20         |
| FORD BRONCO                            | 92            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| SDN CHEV IMPALA 4 DR                   | 00            | -                              | Gasoline                      | 500                              | 29.5                         | 19          | 29         |
| SDN CHEV IMPALA 4 DR                   | 00            | -                              | Gasoline                      | 500                              | 29.5                         | 19          | 29         |
| VAN CHEVY                              | 66            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| SDS DODGE 4DSD                         | 04            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| SDS DODGE 4DSD                         | 04            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| SDS OLDSMOBILE 4DSD                    | 02            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| VAN FORD 7 PASSENGER                   | 01            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| P/U TRUCK CHEVY                        | 01            | -                              | Gasoline                      | 500                              | 29.5                         | 17          | 20         |
| SDN CHEV CELEBRITY                     | 89            | -                              | Gasoline                      | N/A                              | 0.0                          | 23          | 30         |
| SDN CHEV CORSICA                       | 06            | ~                              | Gasoline                      | 8,736                            | 364.0                        | 24          | 31         |
| VAN CHEV ASTRO                         | 88            | 2                              | Gasoline                      | 13,104                           | 728.0                        | 18          | 20         |
| BUS CHEV 15 PASSENGER                  | 91            | 2                              | Gasoline                      | 4,421                            | 260.0                        | 16          | 21         |
| VAN FORD WINDSTAR                      | 98            | -                              | Gasoline                      | 0                                | 0.0                          | 18          | 25         |
| VAN FORD WINDSTAR                      | 98            | -                              | Gasoline                      | 11,471                           | 780.0                        | 18          | 25         |
| P/U TRUCK CHEV                         | 00            | -                              | Gasoline                      | 0                                | 0.0                          | 15          | 20         |
| P/U TRUCK CHEV                         | 00            | -                              | Gasoline                      | 15,028                           | 884.0                        | 15          | 20         |
| VAN DODGE 15 PASSENGER                 | 01            | 2                              | Gasoline                      | 0                                | 0.0                          | 13          | 16         |
| ECONOLINE FORD 15 PASSENGER CLUB WAGON | 05            | 2                              | Gasoline                      | 3,456                            | 192.0                        | 15          | 19         |
| BUS FORD CHAMPION 14 PASSENGER         | 97            | 2                              | Gasoline                      | 2,523                            | 180.0                        | N/A         | N/A        |
| FORD TRUCK                             | 90            | -                              | Gasoline                      | 4,487                            | 204.0                        | 21          | 26         |
| MAZDA TRUCK                            | 00            | -                              | Gasoline                      | 5,851                            | 390.0                        | 15          | 19         |
| VAN FORD                               | 07            | -                              | Gasoline                      | 4,900                            | 416.0                        | 15          | 20         |

|                                       |      |               |          |                 | FUEL                 | Ĩ   |     |
|---------------------------------------|------|---------------|----------|-----------------|----------------------|-----|-----|
| VEHICLE DESCRIPTION                   | YEAR | WEIGHT RATING |          | VEHICLE MILEAGE | CONSUMPTION<br>(GAL) | MPG | MPG |
| VAN GMC RALLY W/C                     | 92   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| VAN GMC RALLY W/C                     | 92   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| VAN FORD CLUBWAGON                    | 86   | 2             | Gasoline | N/A             | N/A                  | 15  | 19  |
| BUS FORD/WAYNE CHAPERONE 15 PASSENGER | 87   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| SUV CHEV 15 PASSENGER                 | 92   | 2             | Gasoline | N/A             | N/A                  | 16  | 21  |
| P/U TRUCK DODGE                       | 72   | 2             | Gasoline | N/A             | N/A                  | 13  | 17  |
| P/U TRUCK CHEV                        | 80   | L             | Gasoline | V/N             | N/A                  | 15  | 20  |
| VAN CHEV                              | 92   | 2             | Gasoline | V/N             | N/A                  | 16  | 20  |
| VAN CHEV                              | 92   | 2             | Gasoline | V/N             | N/A                  | 16  | 20  |
| P/U CHEV                              | 87   | L             | Gasoline | V/N             | N/A                  | 15  | 20  |
| P/U TRUCK 1/2T MAZDA                  | 84   | Ļ             | Gasoline | N/A             | N/A                  | 15  | 19  |
| P/U TRUCK DODGE W/ CREWCAB D350       | 85   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| VAN CHEV 12 PASSENGER                 | 93   | 2             | N/A      | N/A             | N/A                  | 16  | 20  |
| P/U TRUCK DODGE                       | 87   | 2             | Gasoline | V/N             | N/A                  | 13  | 17  |
| FORD AEROSTAR                         | 94   | 1             | Gasoline | N/A             | N/A                  | 17  | 23  |
| P/U TRUCK CHEV                        | 73   | V/N           | N/A      | V/N             | N/A                  | N/A | N/A |
| S/W GMC                               | 86   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| VAN FORD 16 PASSENGER                 | 88   | 2             | Gasoline | N/A             | N/A                  | 14  | 15  |
| VAN FORD 16 PASSENGER                 | 88   | 2             | Gasoline | N/A             | N/A                  | 14  | 15  |
| P/U TRUCK DODGE RAM CHARGER           | 87   | L             | Gasoline | V/N             | N/A                  | N/A | N/A |
| SUV FORD BRONCO                       | 88   | 2             | Gasoline | N/A             | N/A                  | 14  | 18  |
| P/U TRUCK CHEV K-20 4X4               | 98   | -             | Gasoline | N/A             | N/A                  | 15  | 20  |
| P/U TRUCK CHEV K-20 4X4               | 98   | 1             | Gasoline | N/A             | N/A                  | 15  | 20  |
| P/U TRUCK CHEV C-10                   | 98   | 1             | Gasoline | N/A             | N/A                  | 15  | 20  |
| P/U TRUCK CHEV C-10                   | 98   | 1             | Gasoline | N/A             | N/A                  | 15  | 20  |
| P/U TRUCK CHEV C-10                   | 98   | 1             | Gasoline | N/A             | N/A                  | 15  | 20  |
| VAN CHEV EXPRESS                      | 98   | 2             | Gasoline | N/A             | N/A                  | 16  | 20  |
| VAN CHEV EXPRESS                      | 98   | 2             | Gasoline | N/A             | N/A                  | 16  | 20  |
| TRUCK DODGE FLTBD                     | 87   | N/A           | N/A      | N/A             | N/A                  | N/A | N/A |
| SDN CHEVY LUMINA 4DR                  | 93   | 1             | Gasoline | N/A             | N/A                  | 20  | 29  |
| TOYOTA CAMRY                          | 05   | -             | Gasoline | N/A             | N/A                  | 24  | 34  |
| VAN DODGE 15 PASSENGER                | 00   | 2             | Gasoline | N/A             | N/A                  | N/A | N/A |

|            |      | FY 08 PURCHAS                | SES    |           |                           |
|------------|------|------------------------------|--------|-----------|---------------------------|
| PROGRAM    | YEAR | ТҮРЕ                         | GVW    | FUEL TYPE | COST                      |
| SD-MAUI    | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23,933.64               |
| SD-HILO    | 2008 | CROWN VICTORIA               | < 8500 | E-85      | \$37,316.17               |
| HCCC       | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23,933.64               |
|            | 2008 | High Cube Van (Food Service) | > 8500 | E-10      | \$41,660.00               |
| HCF        | 2008 | 7- PASSENGER MINI VAN        | < 8500 | E-85      | \$24,732.00               |
|            | 2008 | F-350FLATBED                 | > 8500 | E-10      | \$31,296.00               |
| KCF        | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23.933.64               |
|            | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23,933.64               |
|            | 2008 | F-250                        | > 8500 | E-10      | \$20,560.00               |
|            | 0000 |                              | 0600   |           | ¢00 000 64                |
| 222        | 0000 |                              | > 0000 |           | \$23,333.04<br>#10,001,00 |
|            | 2008 |                              | 0068 > | E-10      | 00.089,81\$               |
| MCCC       | 2008 | F-250                        | > 8500 | E-10      | \$21,295.62               |
|            | 2008 | F-250                        | > 8500 | E-10      | \$21,295.62               |
|            |      |                              |        |           |                           |
| 0000       | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23,933.64               |
|            | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$23,933.64               |
| WCCC       | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$29,373.00               |
|            | 2008 | 12 - PASSENGER VAN           | > 8500 | E-10      | \$29,373.00               |
|            |      |                              |        |           |                           |
| WCF        | 2008 | F-250                        | > 8500 | E-10      | \$20,560.00               |
|            | 2008 | F-350FLATBED                 | > 8500 | E-10      | \$31,296.00               |
| TSD        | 2008 | 7- PASSENGER MINI VAN        | < 8500 | E-85      | \$24,732.00               |
| PERSONNEI  | 2008 | 7- PASSENGER MINI VAN        | < 8500 | F-85      | \$24,732,00               |
|            |      |                              |        |           |                           |
| OFFICE SVC | 2008 | CARGO MINI VAN               | < 8500 | E-85      | \$18,644.00               |
|            |      | TOTAL                        |        |           | CEEN DOE BO               |
|            |      | 10.14                        |        |           | 00.000,4000               |
|            |      |                              |        |           |                           |
|            |      |                              |        |           |                           |
|            |      |                              |        |           |                           |

# NELHA VEHICLE INVENTORY AND FUEL ECONOMY

| Make: Chevy (Cost @ \$22,500)   | Year: 2007     | Model: Pick-up |
|---------------------------------|----------------|----------------|
| Description: 1500 Silverado 4WD | Color:         | White          |
| Vin # 1GCEK14C97Z526482         | License # C666 | State I.D. #   |
| Engine Type: 4.8 LITERV8        |                |                |

| Date      | Mileage | Date     | Mileage | Total Miles | Avg. Miles per Gallon |
|-----------|---------|----------|---------|-------------|-----------------------|
| 02/020/07 | 121     | 09/11/07 | 4058    | 3937        | 13.4                  |
|           |         |          |         |             |                       |

| Make: Chevy (Cost @ \$20,390)   | Year: 2006     | Model: Pick-up |
|---------------------------------|----------------|----------------|
| Description: 1500 Silverado 4WD | Color:         | White          |
| Vin # 3GCEK14V56G159435         | License # C202 | State I.D. #   |
| Engine Type: 4.8 LITERV8        |                |                |

| Date     | Mileage | Date     | Mileage | Total Miles | Avg. Miles per Gallon |
|----------|---------|----------|---------|-------------|-----------------------|
| 02/13/07 | 5748    | 09/13/07 | 8940    | 3192        | 14.0                  |
|          |         |          |         |             |                       |

| Make: Chevy (Cost @ \$00)    | Year: 1994     | Model: Lumina Van |
|------------------------------|----------------|-------------------|
| Description: 7 Passenger Van | Color:         | WHT               |
| Vin # 1GNDUGL2RT158012       | License # A540 | State I.D. #      |
| Engine Type: 3.8 L V-6 GAS   |                |                   |

| Date     | Mileage | Date     | Mileage | Total Miles | Avg. Miles per Gallon |
|----------|---------|----------|---------|-------------|-----------------------|
| 03/06/07 | 93010   | 09/13/07 | 95180   | 2170        | 16                    |
|          |         |          |         |             |                       |

| Make: Chevy (Cost \$12,500)                      | Year: 1992     | Model: Pick-up |
|--------------------------------------------------|----------------|----------------|
| Description: <sup>3</sup> / <sub>4</sub> Ton 4x2 | Color: Tan     |                |
| Vin # 1GCF24K8N2198404                           | License # 6129 | State I.D. #   |
| Engine Type: 5.7 350 V-8 Gas                     |                |                |

| Date     | Mileage | Date    | Mileage | Total Miles | Avg .Miles per Gallon |
|----------|---------|---------|---------|-------------|-----------------------|
| 02/23/07 | 62915   | 9/25/07 | 65634   | 2719        | 13.5                  |
|          |         |         |         |             |                       |