Future Electricity Sector Ownership & Regulation in Hawaii

Prepared for Hawaii Department of Business, Economic Development, and Tourism (“DBEDT”)
The primary goals of today’s meeting are to provide background information and obtain feedback from stakeholders

1. **Overview of the study undertaken by the Project Team to review utility ownership and regulatory models**

2. **Provide an overview of the attributes of selected regulatory models included in the Study**

3. **Solicit stakeholders’ input on the regulatory models**
DBEDT is directed by the legislation to:

Evaluate alternative utility and regulatory models

Ownership models include: co-ops, investor-owned utilities, Single Buyer, and integrated distribution energy resources (“IDER”) system operator

Regulatory models include status quo with HERA, independent system operator, distribution-focused regulatory model, and performance-based regulation

Assess the ability of each model to:

1) Achieve state energy goals
2) Maximize customer cost savings
3) Enable a competitive distribution system
4) Eliminate or reduce conflicts of interest

Conduct a long-term cost benefit analysis

- Costs required to change from current model to new model
- Legal and regulatory approvals needed for the change
- Impact on revenue requirements and rates
- Effects on distributed energy resources

Source: House Bill 1700
We will perform stakeholder outreach and multiple analyses from feasibility to financing.
We are currently analyzing the regulatory models and the feedback received in this meeting will factor into that.

Intro & Ownership Models
Determine the long-term operational and financial costs and benefits of electric utility ownership models to serve each county of Hawaii.

Regulatory Models
Determine the long-term operational and financial costs and benefits of electric utility regulatory models to serve each county of Hawaii.

Additional Analyses
Provide additional insight and analysis of ownership and regulatory models.

Final Report
Develop and deliver the executive summary, formal presentation, and final report.

Stakeholder Engagement
(> 200 attendances at VERGE workshop/ community discussion in 2017, ~ 50 one-on-one meetings with stakeholders, and 2 core group meetings/ calls as of June 2018)
We are evaluating six regulatory models, which are not mutually exclusive:

1: COS (status quo)
2: Status quo with HERA
3: Independent System Operator
4: Distribution-focused
5: Performance-based regulation
6: Reduced oversight of co-ops by PUC
Model 1: Status Quo

1: COS (status quo)

2: Status quo with HERA

3: Independent System Operator

4: Distribution-focused

5: Performance-based regulation

6: Reduced oversight of co-ops by PUC
Hawaii is served by vertically-integrated utilities, under the purview of the Public Utilities Commission.

Players
- HECO, HELCO, MECO, KIUC, IPPs, self-supply

Utility's tasks
- Owns, manages, and operates generation plants
- Dispatches, and controls the grid system
- Builds new generation and procures electricity
- Owns, operates, maintains, plans, and develops transmission system
- Owns, manages, maintains, plans, operates, and develops distribution system
- Conducts long-term resource planning
- Complies with availability, reliability, and service quality standards set by the PUC

Regulator: Public Utilities Commission
- Monitors availability
- Approves fuel supply contracts
- Approves PPAs and new generation builds
- Approves resource planning
- Monitors service quality
- Monitors reliability
- Ensures grid access
- Approves system planning and wires investments
- Regulates rates
HECO Companies’ rates are determined through a cost of service approach

- Cost of service is the amount of revenue a regulated utility must collect from rates charged to customers to recover the cost of doing business

- A cost-of-service is a measure of the utility’s “revenue requirement” that will provide the utility the opportunity to operate profitably and attract capital for future growth

Option 1: Status Quo

Average electricity rate = Revenue requirements / Electricity sales or volume

Revenue requirements = Rate base x Allowed return + Operating costs

Rate base consists of the investment in net utility plant and other items such as regulatory assets and working capital

Required rate of return to recover the utility’s cost of debt, cost of preferred stock, and cost of common equity

Expenses related to operating and maintaining the utility
Model 2: Status Quo with HERA

1: COS (status quo)
2: Status quo with HERA
3: Independent System Operator
4: Distribution-focused
5: Performance-based regulation
6: Reduced oversight of co-ops by PUC
A dedicated body (Hawaii Electricity Reliability Administrator) would enforce and oversee compliance with formal reliability standards

What is it?
- HERA was established to ensure that the State’s clean energy goals will be achieved by implementing reliability standards across all electric value chain and providing fair grid access to generators

How does it work?
- HERA will support the PUC in carrying out critical functions related to reliability and grid access oversight functions
- The PUC may contract with a person, business, or organization, (but not a public utility) for the performance of HERA’s functions
- HERA shall report to the PUC each year on the status of its operations, financial position, and a projected operational budget

What are the advantages?
- Ensures fair and transparent grid access
- Safeguards system reliability, resiliency, and accountability
- Recommends specific reliability standards relevant to Hawaii context
- Can develop into a center of excellence, expertise and best practice

What are the disadvantages?
- Risk of ambiguity of roles between Commission and HERA
- Increased cost of establishing and operating HERA to fall on ratepayers

Where has this been implemented?
- North American Electric Reliability Corporation (“NERC”)
Model 3: Independent System Operator

1: COS (status quo)

2: Status quo With HERA

3: Independent System Operator

4: Distribution-focused

5: Performance-based regulation

6: Reduced oversight of co-ops by PUC
Utility will turn over the day-to-day operations of the transmission grid and resource planning to the ISO

<table>
<thead>
<tr>
<th>What is it?</th>
<th>An independent and not-for profit entity will be responsible for system planning and dispatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does it work?</td>
<td>Uses bid-based markets to determine economic dispatch for wholesale electric power</td>
</tr>
<tr>
<td></td>
<td>ISO’s functions may include operational control of the transmission and distribution system, coordination of transmission and generation, maintenance scheduling, and security coordinator, to name a few</td>
</tr>
<tr>
<td></td>
<td>Utilities continue to own, maintain, and develop the transmission and distribution system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What are the advantages?</th>
<th>Fosters competition among generation resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eliminates discrimination in transmission services</td>
</tr>
<tr>
<td></td>
<td>Improves efficiency of operations through market forces</td>
</tr>
<tr>
<td></td>
<td>Facilitates lighter regulation after establishment of market rules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What are the disadvantages?</th>
<th>Significant upfront and operating costs to setup and run the ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High level of stakeholder engagement required</td>
</tr>
<tr>
<td></td>
<td>May lead to price volatility</td>
</tr>
</tbody>
</table>

| Where has this been implemented? | North America: Alberta, California, New England, New York, Pennsylvania-New Jersey-Maryland, Midwest, Ontario, Southwest, Texas |
Option 4: Distribution-Focused

1: COS (status quo)

2: Status quo with HERA

3: Independent System Operator

4: Distribution-focused

5: Performance-based regulation

6: Reduced oversight of co-ops by PUC
Distribution utilities are required to provide a platform for third-party participation in a distribution system marketplace

<table>
<thead>
<tr>
<th>What is it?</th>
<th>Utilities provide distributed system platform (“DSP”) services to enable third-party DER providers to create value for both customers and the system</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does it work?</td>
<td>Utilities still own and operate the distribution system and become the Distributed System Platform Provider (“DSPP”). DSPP is responsible for planning and designing its distribution system to be able to integrate DER. DSPP allows third-party access to the grid and make data available</td>
</tr>
<tr>
<td>What are the advantages?</td>
<td>Potential for lowering costs to consumers through optimizing of DER solutions such as storage. Facilitate greater penetration of renewables and access for behind-the-meter generation resources. Market efficiencies from increased competition</td>
</tr>
<tr>
<td>What are the disadvantages?</td>
<td>High up-front costs can lower accessibility of markets to all customers. Technical complexity means risk of high costs. Extensive levels of consumer education required. Currently evolving so limited best practices to learn from</td>
</tr>
<tr>
<td>Where has this been implemented?</td>
<td>Reforming the Energy Vision (“REV”) model is being assessed in New York State</td>
</tr>
</tbody>
</table>
Option 5: Performance-Based Regulation

1: COS (status quo)
2: Status quo with HERA
3: Independent System Operator
4: Distribution-focused
5: Performance-based regulation
6: Reduced oversight of co-ops by PUC
By instituting a PBR proceeding, the PUC is seeking to further incentivize HECO utilities to reduce costs, innovate, and achieve state goals.

- In its Order instituting the proceeding, the Commission indicated it is interested in PBR mechanisms that result in:
 - Greater *cost control* and reduced rate volatility;
 - *Efficient investment* and allocation of resources regardless of capital or operating expense;
 - Fair *distribution of risks* between utilities and customers; and
 - Fulfillment of *State policy goals*.

Hawaii PUC PBR Proceeding Timeline

Phase I
- **Goal:** Examine the current regulatory framework and identify areas of utility performance that are deserving of further focus for PBR framework
- **Timeframe:** The commission expects Phase 1 to conclude in ~ 9 months

Phase II
- **Goal:** Focus on refinement and/or modifications to existing regulatory framework that will incent the utility to achieve measured and successful outcomes
- **Timeframe:** The commission expects Phase 2 to conclude in ~ 12 months

Source: HPUC, Order 35411, *Proceeding to investigate performance-based regulation for the Hawaiian Electric Companies*
Performance-based regulation ("PBR") regime strengthens financial incentives to lower rates and improve non-price performance

What is it and how does it work?

► It seeks to *correct the most common foundational problems* observed in traditional cost of service regulation:
 - Weaker incentives for cost efficiency
 - Lack of incentives to encourage prudent and efficient capital investment
 - Intensity of the associated administrative process

► It allows the adjustment of utility revenues *based on its performance*

► It *exists as a continuum* with "soft to "hard" mechanisms and not just a single type of regulatory regime

"Soft" "Medium" "Hard"

Incentives (and penalties) included on top of cost of service ("performance standards with rewards or penalties")

Savings for improved efficiency shared with customers ("earnings sharing mechanism")

Provide mechanism to ensure prudence in capital spending to remove bias towards capital spending

Utility revenues set independent of investments
PBR has a number of perceived advantages and disadvantages.

Advantages

1. **Aligns incentives** of utilities with policy goals of the state.
2. **Encourages utilities to operate more efficiently**, leading to lower rates than could have been under COS.
3. **Should reduce regulatory burden** by decreasing the need for frequent regulatory hearings in the long run.
4. **Allows the utility sufficient freedom** to decide how to best optimize its resources given the targets and objectives.

Disadvantages

1. A lot of regulatory work needed to **design the PBR framework and performance standards**, especially during the first generation/term.
2. Requires good data to adequately monitor performance metrics.
3. Requires the ability to **forecast elements** and for a longer period of time compared to a COS regime.
4. Appropriate design of **capex incentives** have been challenging where future capex differs from “steady state.”
Option 6: Lightened Regulation of KIUC

1: COS (status quo)
2: Status quo with HERA
3: Independent System Operator
4: Distribution-focused
5: Performance-based regulation
6: Reduced oversight of co-ops by PUC
Co-ops would be autonomous and independently controlled by its members

What is it?

► Co-ops will be exempted from most of PUC’s regulations established based on an IOU structure such as approval of:
 — rate setting and design
 — power purchase agreements and fuel contracts
 — large capital expenditure over $2.5 million

How does it work?

► Board of Directors will continue to approve operating and capital budget, develop plans taking into account the interest of the members, and ensure adequacy of electricity
► Co-ops will continue to be under the regulatory oversight of the Rural Utilities Service in terms of planning, financing, and capital investments

What are the advantages?

► Reduces redundant governance and regulatory burden for co-ops
► Eliminates costs for co-ops from reduced participation in regulatory dockets and regulatory compliance
► Functions similarly as other co-ops in the US where they are outside of the purview of the State Commission

What are the disadvantages?

► Lost of fee revenues for PUC
► Harder to ensure that co-op goals align with state policy goals
► Undermines the objective role of the PUC as a mediator between the co-op and their members (e.g., dispute over rate or other policies)

Where has this been implemented?

► Most other co-ops in the US
Agenda

1. About the Study
2. Regulatory Models
3. Small Group Discussions
Guiding questions for small groups:

1. Priorities? What’s working? What could be improved?
2. Thoughts on different regulatory models?
3. Thoughts on the PBR model?
Community meetings and working sessions

Wednesday June 13
- 5:30-7:00 p.m. Kailua, Oahu
- Enchanted Lake Elementary School, Dining Hall

Thursday June 14
- 6:00-7:30 p.m. Honolulu, Oahu
- Homer A. Maxey International Trade Resource Center Conference Room at the Hawaii Foreign-Trade Zone #9

Friday June 15
- 5:30-7:00 p.m. Lihue, Kauai
- Kauai High School, Dining Hall

Monday June 18
- 6:00-7:30 p.m. Wailuku, Maui
- Waikapu Community Center

Tuesday June 19
- 6:00-7:30 p.m. Kaunakakai, Molokai
- Mitchell Pauole Community Center

Wednesday June 20
- 6:00-7:30 p.m. Lanai City, Lanai
- Lanai Community Center

Thursday June 21
- 5:30-7:00 p.m. Hilo, Hawaii
- Waiakea High School, Dining Hall

Friday June 22
- 5:30-7:00 p.m. Kailua-Kona, Hawaii
- Natural Energy Laboratory of Hawaii Authority, Hale Iako Collaboration Room

RSVP online: http://energy.hawaii.gov/utility-model/community-outreach