Zero Energy Home Design Image: Constraint of the constra	Net-zero concept	Motivations
PV system primer	How homes use energy in Hawai'i	The energy code, the starting point for efficiency
Beyond-code efficiency strategies	Integrating PV and batteries	Hawaii Energy
Wrap Up		

Zero Energy Home Design

Webinar December 2, 2021

Presentation Collaborators

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

COURSE DESCRIPTION

This webinar provides guidance on net zero energy design for architects, contractors and others involved in low-rise residential development. Topics:

- Recent UH research on how Hawai'i homes consume energy
- Cost effective beyond-code energy efficiency strategies
- Integrating solar energy for net-zero performance
- Adding battery storage to shift electricity demand

The need for zero-energy homes is greater than ever as Hawaii transitions to 100 percent clean energy. The goal of this webinar is to aid in this transition with information that helps designers and contractors integrate efficiency, solar energy and energy storage. The guidance is informed by several research projects, including detailed monitoring and simulation of seven Hawaii homes [https://seagrant.soest.hawaii.edu/going-beyond-code/].

LEARNING OBJECTIVES

At the end of this course, participants will be able to:

- 1. Describe how Hawaii's homes, conditioned and unconditioned, consume energy
- 2. Identify cost-effective building envelope and AC efficiency strategies
- 3. Evaluate tradeoffs between water heating system alternatives
- 4. Plan for solar electric and battery systems in new home design

Introductions

Presenters

- Wendy Meguro, UH Manoa School of Architecture & Hawai'i Sea Grant
- Eileen Peppard, Hawai'i Sea Grant
- Rocky Mould, Hawaii Solar Energy Association
- Erik Kolderup, Kolderup Consulting
- Justin Bizer, Hawaii Energy

Acknowledgments

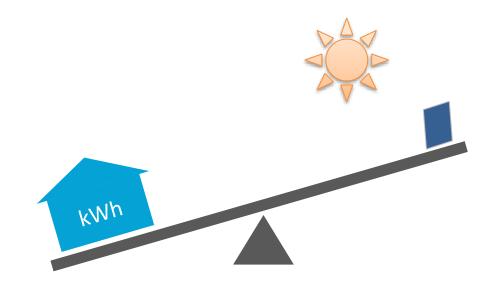
- Gail Suzuki-Jones, State Energy Office
- Howard Wiig, State Energy Office
- Kathy Yim, State Energy Office
- Sehun Nakama, Hawaii Energy
- Karen Shishido, Hawaii Energy

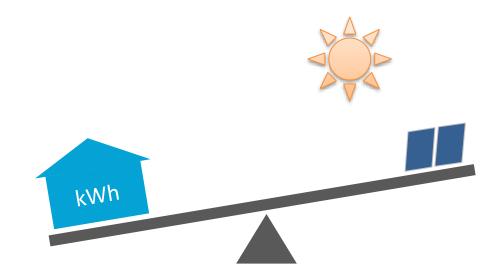
Net-zero concept

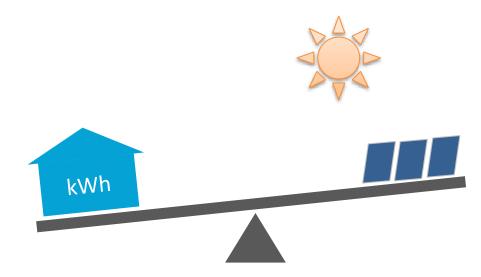
Motivations

PV system primer

How homes use energy in Hawai'i

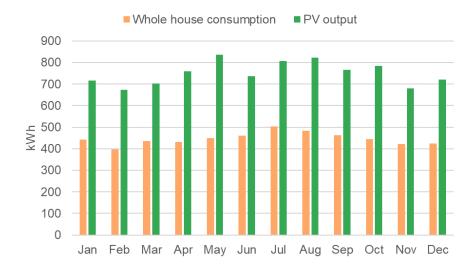

The energy code, the starting point for efficiency

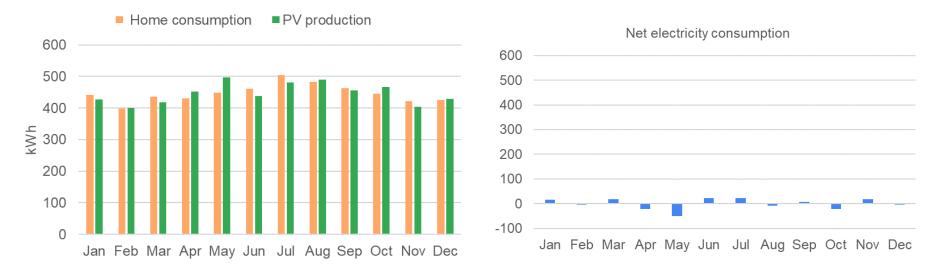

Beyond code efficiency strategies

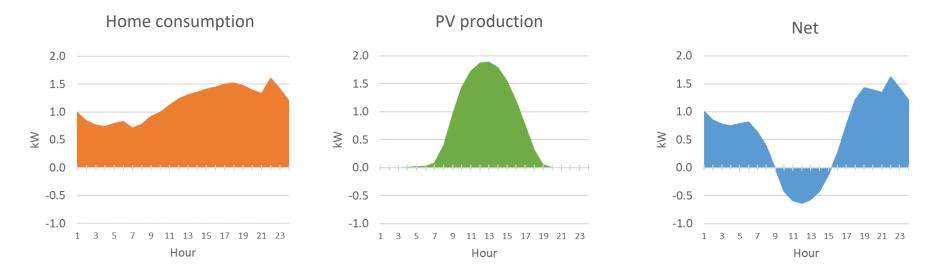

Integrating PV and batteries

Hawaii Energy incentives

Net-zero concept




Annual balance


Rendering by Jeff Brink, edited by Darlyn Chau and Aiko Tells 2,270 ft^e | Family of 4 | 4 BR Armstrong Builders | LEED Platinum | NAHB Silver

Annual balance

With PV results scaled down to equal home consumption

Daily balance

Annual average daily profiles for four monitored homes

Daily balance

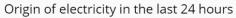
Home consumption

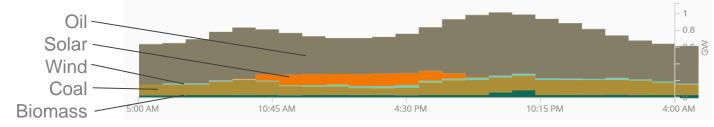
PV production

																																-						
Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Hour	Jan	Feb	Mar	Anr	May	Jun	Inf	Διισ	Sen	Oct	Nov	Dec
0	0.7	0.8	0.8	1.0	0.9	0.8	1.0	1.1	1.0	0.8	0.8	0.9	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.8		1.0		0.8		0	1.0	0.8	0.9	
1	0.7	0.6	0.7	0.8	0.8	0.8	0.9	0.9	0.9	0.7	0.8	0.8	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1		0.6		0.9	0.8		0.9	0.9	0.9	0.7	0.8	
2	0.6	0.5	0.6	0.7	0.8	0.7	0.8	0.8	0.8	0.7	0.6	0.8	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	0.7	0.6				0.7			0.8	0.7	0.6	
3	0.6	0.6	0.6	0.7	0.8	0.7	0.9	0.8	0.9	0.7	0.6	0.7	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3		0.6		0.7	0.8		0.9		0.9	0.7	0.6	
4	0.7	0.6	0.7	0.8	0.8	0.7	0.9	1.0	0.9	0.7	0.7	0.7	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4		0.6			0.8			1.0	0.0	0.7	0.7	
5	0.8	0.7	0.7	0.9	0.9	0.8	1.0	1.0	0.9	0.7	0.8	0.8	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5	0.8	0.7			0.9	0.8			0.9	0.8	0.8	
6	0.7	0.5	0.6	0.7	0.9	0.7	1.0	1.0	0.8	0.7	0.8	0.7	6	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	5		0.5			0.8	0.6			0.8	0.6	0.8	
7	0.7	0.7	0.7	0.9	0.8	0.9	1.0	1.0	0.8	0.8	0.8	0.7	7	0.1	0.1	0.3	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.3	0.1	7		0.6				0.4			0.4	0.3	0.4	
8	0.7	0.7	0.8	1.0	1.0	1.1	1.3	1.1	1.0	0.9	0.8	0.6	8	0.7	0.5	0.7	0.8	1.0	1.0	0.7	0.8	0.9	1.0	0.9	0.7	, 8		0.2										
9	0.8	0.8	0.9	1.0	1.0	1.2	1.2	1.2	1.1	1.1	1.0	0.7	9	1.2	1.0	1.1	1.3	1.4	1.5	1.1	1.2	1.3	1.5	1.4	1.2	0		-0.2										
10	1.0	0.8	0.9	1.1	1.2	1.2	1.4	1.3	1.3	1.1	1.1	0.7	10	1.6	1.4	1.5	1.6	1.6	1.7	1.4	1.4	1.6	1.7	1.7	1.4	10		-0.2										
11	1.1	0.9	0.9	1.1	1.2	1.3	1.6	1.5	1.4	1.1	1.1	0.8	11	1.9	1.6	1.7	1.8	1.8	1.8	1.6	1.6	1.7	1.8	1.8	1.6	11		-0.7										
12	1.0	0.9	0.9	1.1	1.3	1.4	1.5	1.5	1.4	1.1	1.1	0.8	12	1.9	1.7	1.7	1.8	1.8	1.9	1.6	1.7	1.8	1.8	1.8	1.5	12		-0.8										
13	1.0	0.9	0.9	1.0	1.3	1.4	1.6	1.5	1.4	1.2	1.2	0.9	13	1.8	1.6	1.7	1.8	1.7	1.7	1.6	1.6	1.7	1.6	1.7	1.5	12		-0.7										
14	1.1	0.9	0.9	1.0	1.3	1.4	1.6	1.5	1.5	1.3	1.3	0.9	14	1.6	1.4	1.5	1.5	1.4	1.5	1.3	1.4	1.6	1.3	1.4	1.3	14		-0.5									-0.1	
15	1.1	0.9	1.0	1.1	1.4	1.4	1.6	1.6	1.5	1.3	1.2	1.0	15	1.3	1.2	1.2	1.2	1.1	1.2	1.1	1.1	1.2	1.1	1.0	0.9	14		-0.3										
16	1.1	1.0	1.0	1.2	1.3	1.4	1.6	1.8	1.7	1.3	1.3	1.0	16	0.8	0.8	0.8	0.8	0.7	0.9	0.7	0.8	0.7	0.7	0.5	0.5	15		0.2				0.2			1.0		0.2	
17	1.1	1.0	1.0	1.3	1.2	1.4	1.8	1.8	1.7	1.3	1.4	1.1	17	0.3	0.3	0.4	0.4	0.4	0.5	0.4	0.4	0.3	0.2	0.1	0.1	10		0.2									1.3	
18											1.3		18	0.0	0.0	0.0	0.1	0.1	0.2	0.1	0.1	0.0	0.0	0.0	0.0	10		1.0									1.3	
19	1.2	1.1	1.1	1.3	1.3	1.3	1.6	1.8	1.6	1.1	1.4	1.2	19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18		1.1										
20											1.2		20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19		1.1									1.4	
21											1.2		21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20		1.2										
											1.1		22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21		1.2									1.2	
											0.9		23	0.0	0.0		0.0							0.0	0.0			1.1										

Monthly average daily kW profiles for four monitored homes

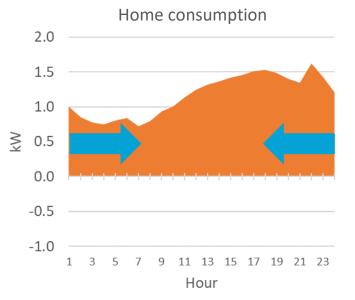
Net


Beyond net zero energy goals


 CO_2 emissions

Load shifting

Oahu Electricity Carbon Intensity (g/kWh) 24-hour period, Nov 23/24, 2021

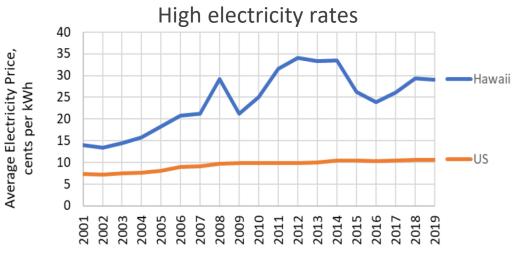


https://app.electricitymap.org/zone/US-HI-OA

Beyond net zero energy goals

CO₂ emissions

Load shifting


Reduce utility bills 📫

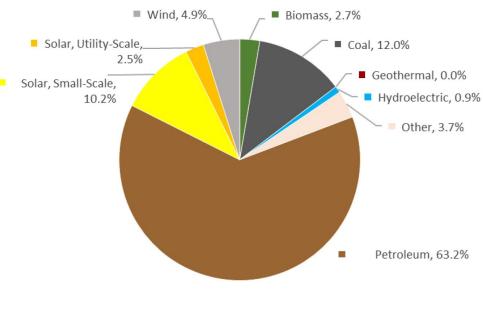
Reduce imported energy

Reduce climate impact

Support State goals

Single family home \$2,500/yr average utility bill

Hawai'i's Energy Facts and Figures 2020, HSEO


Reduce utility bills

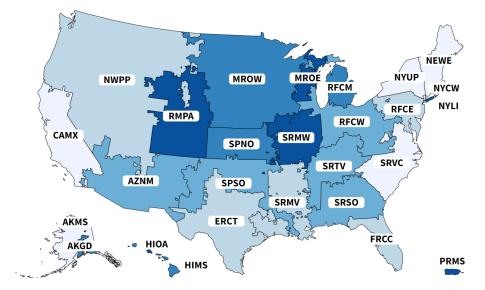
Reduce imported energy

Reduce climate impact

Support State goals

Hawai'i electricity source (2019)

Hawai'i's Energy Facts and Figures 2020, HSEO


Reduce utility bills

Reduce imported energy

Reduce climate impact 📫

Support State goals

CO₂ total output emission rate (lb/MWh) by eGRID subregion, 2019

https://www.epa.gov/egrid

Reduce utility bills

Reduce imported energy

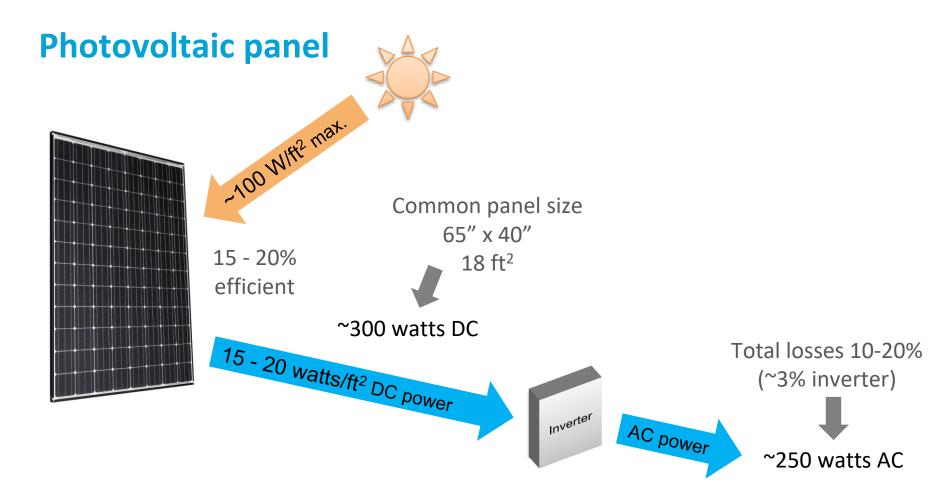
Reduce climate impact 🔿

Support State goals

	0	500 1K	1.5 ^K lb/MWh
Oahu =	HIOA -		1,695
	SRMW -		1,584
	PRMS -		1,537
	MROE -		1,503
	RMPA –	1	1,243
	NYLI –	1,	,209
N	RFCM -	1,	189
Neighbor islands	HIMS -	1,	186
	AKGD -	1,11	L4
	MROW -	1,09	8
	SPNO -	1,070	C
	RFCW -	1,068	3
	SPSO -	1,002	
	SRSO -	969.16	
	AZNM –	952.32	
National average 884	SRTV -	949.70	
	ERCT -	868.64	
	FRCC -	861.03	
	SRMV -	806.75	
	NWPP -	715.24	
	RFCE -	695.03	
	SRVC -	675.42	
	NYCW -	553.80	
	AKMS -	549.31	
	NEWE -	488.89	
	CAMX – NYUP –	453.21 232.31	
	NTUP -	232.31	

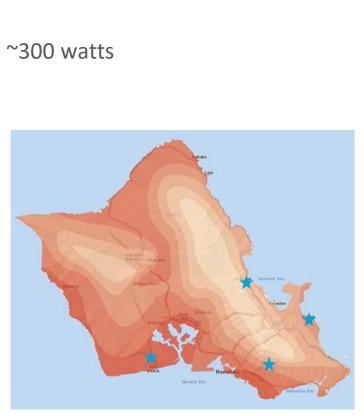
Reduce utility bills

Reduce imported energy

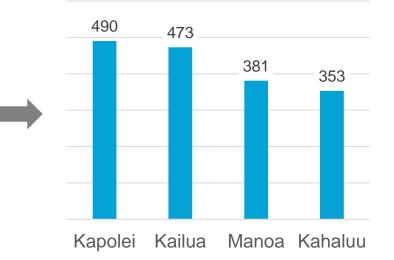

Reduce climate impact

Support State goals 📫

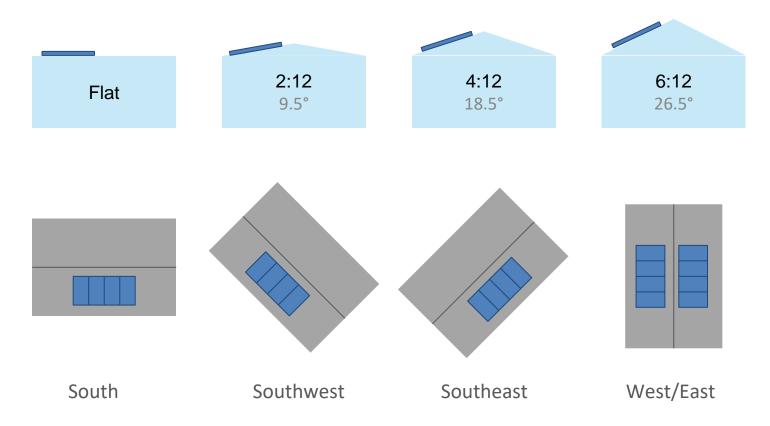
Energy
savings2008 - Energy Efficiency Portfolio
Standard (EEPS)
4300 GWh savings by 2030Renewable
energy2015 - Renewable Portfolio Standard
40% renewable by 2030
70% by 2040
100% by 2045


Greenhouse2018 - HB2182gassesNet zero greenhouse gasses by 2045

PV system primer



Photovoltaic panel


kWh/year

https://pvwatts.nrel.gov Facing south, 20° tilt

http://geodata.hawaii.gov/energis

Tilt and Orientation

PV Orientation and Tilt Impact

		-	-			entatio					_
		N	NW	W	SW	S	SE	E	NE	Ν	
		0°	315°	270°	225°	180°	135°	90°	45°	0°	Roof pitch
Horizontal	0°	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	1:12 = 4.5°
- Tilt	10°	0.89	0.90	0.94	0.97	0.99	0.98	0.95	0.92	0.89	2:12 = 9.5°
	20° 30°	0.82	0.84	0.91	0.97	1.00	0.99	0.94	0.87	0.82	⇐──── 4:12 = 18.5°
		0.72	0.77	0.87	0.95	0.99	0.98	0.91	0.80	0.72	5:12 = 22.5° 6:12 = 26.5°
	40°	0.62	0.69	0.83	0.91	0.96	0.95	0.88	0.73	0.62	8:12 = 33.7°
	50°	0.52	0.61	0.77	0.86	0.90	0.90	0.83	0.65	0.52	⇐───12:12 = 45°
	60°	0.43	0.54	0.72	0.80	0.82	0.84	0.77	0.58	0.43	
	70°	0.36	0.47	0.66	0.72	0.72	0.77	0.71	0.52	0.36	
	80°	0.29	0.42	0.60	0.64	0.61	0.68	0.65	0.46	0.29	
Vertical	90°	0.25	0.38	0.54	0.56	0.51	0.59	0.58	0.41	0.25	

Orientation

Based on Kapolei, Oahu location and weather

VWatts ®	Calculator					
My Location	<i>kapolei</i> » Change Location		English Español	HELP	FEEDBACK	ALL NREL SOLAR TOOLS
4		RESOURCE DATA SYSTEM INFO	RESULTS			
$\boldsymbol{<}$	SYSTEM INFO Modify the inputs below to ru	n the simulation.		RE	STORE DEFAULT	
Go to	DC System Size (kW):	4		Drav	v Your Systen	n Go to PVWatts
data	Module Type:	Standard 🗾 🚺		custo	below to mize your syster map. (optional)	results
	Array Type:	Fixed (open rack)			Map Sate	0.0
	System Losses (%):	14.08	Calculator			>
	Tilt (deg):	20		Google		1
	Azimuth (deg):	180				

Watts®	Calculator			N	
My Location	<i>kapolei</i> » Change Location		English HELP Espanol	FEEDBACK	ALL NREL SOLAR TOOLS
4		RESOURCE DATA SYSTEM INF	0 RESULTS		
Go to	RESULTS	System output may range	6,656 k from 6,457 to 6,857 kWh per y Click HERE	Wh/Year* ear near this location. for more information.	
system info	Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Value (\$)	
	January	5.50	521	183	
	February	5.93	506	178	
	March	6.32	589	207	
	April	6.31	583	205	
	Мау	6.16	576	202	
	June	6.08	546	192	
	July	6.30	592	208	
	August	6.47	605	212	
	September	6.27	569	200	
	October	6.08	569	200	
	November	5.51	499	175	
	December	5.21	500	176	
	Annual	6.01	6,655	\$ 2,338	

Customize Your System To Your Roof

On the map below, click the corners of the desired system. Note that the roof tilt and azimuth cannot be automatically determined from the aerial imagery, and consequently the estimated system capacity may not reflect what is actually possible.

System Capacity: 4.5 kWdc (30 m2)

How homes use energy in Hawai'i

Kanehili Gentry Homes, DHHL, East Kapolei, 2009

Energy Monitoring and Simulation Study

Research Questions:

- 1) How is energy being used? (monitoring)
- 2) Can we recommend design improvements? (energy simulation)

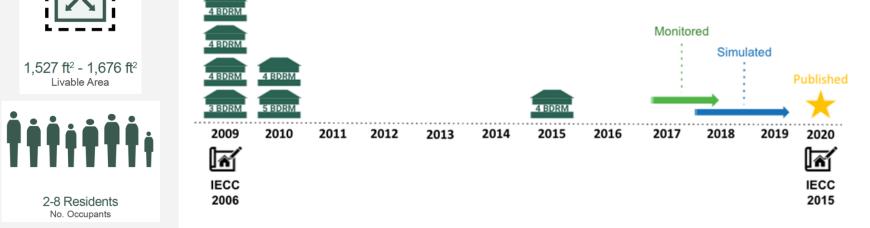
Current transducers

Image Credit: Gentry Kapolei Development, LLC

Monitoring

BEopt simulation menu

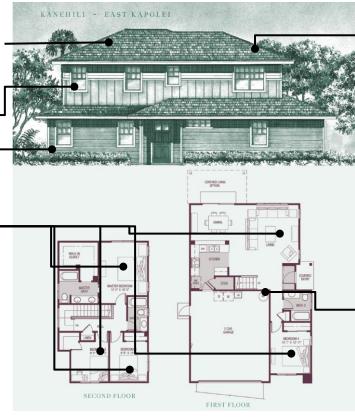
Kanehili Gentry Homes, DHHL, East Kapolei, 2009


Energy Monitoring and Simulation Study

Peer-reviewed journal article: Going Beyond Code: Monitoring Disaggregated Energy and Modeling Detached Houses in Hawai'i by W. Meguro, E. Peppard, S. Meder, J. Maskrey, R. Josephson. Buildings 10(7), 120. Free access.

Brochure on Hawaii Sea Grant website.

Image Credit: Gentry Kapolei Development. LLC


Kanehili Gentry Homes, DHHL, East Kapolei, 2009

16.1-SEER* central AC, ducts inside conditioned space

Dual pane, low-e glass, vinyl frame, U-value 0.3 and SHGC 0.34

R-11 batt, wood studs

Pre-wired for ceiling fans in living and all bedrooms*

Open cell spray foam* R-19 insulation at rafters

Roof-mounted solar water heating panels; electric backup; 120 gal storage

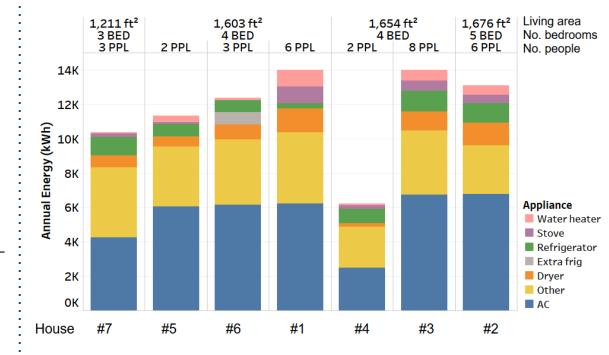
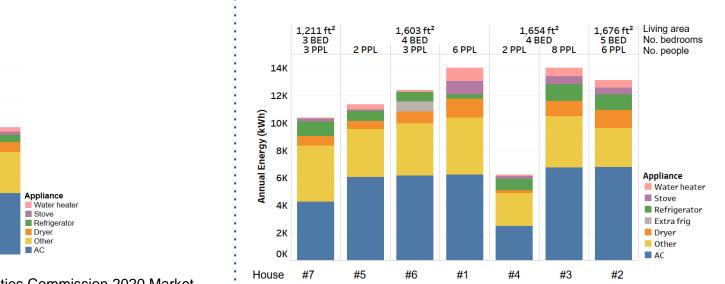

*Beyond code

Image Credit: Gentry Kapolei Development, LLC

Kanehili Gentry Homes, East Kapolei, 2009

Image: Gentry Kapolei Development, LLC


Disaggregated annual energy use

END USE	RANGE (kWh/year)
Water heater	62 - 816
Stove	93 - 985
Refrigerator	714 - 1,203
Dryer Dryer	186 - 1,393
Plug loads + lights	2,375 - 4,523
AC	2,455 - 6,816
Whole house use	6,187 - 14,025

Kanehili Gentry Homes, East Kapolei, 2009

Image: Gentry Kapolei Development, LLC

The State of Hawaii Public Utilities Commission 2020 Market Potential Study. Average annual consumption per household (kWh/HH) in 2018: single family, centrally air conditioned, Oahu (house size unknown). Data adapted by Erik Kolderup.

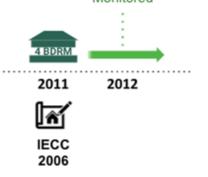
14K 12K

10K

6K

4K

2K


0K

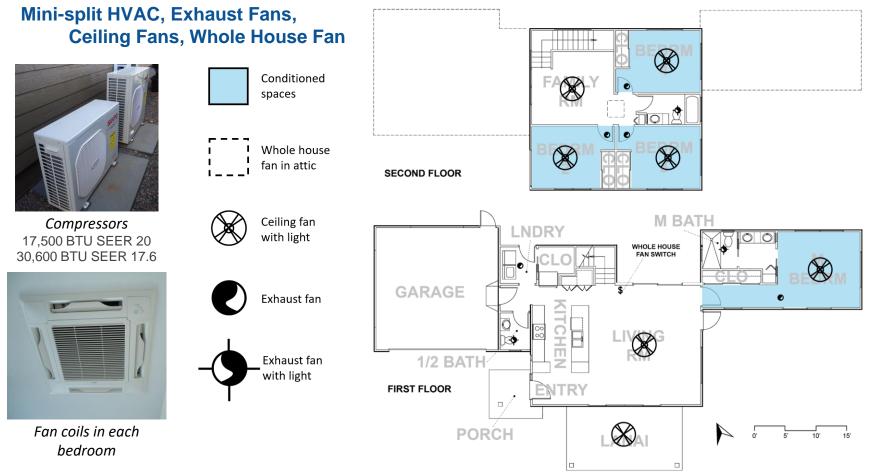
Energy (kWh) 8K

Kanehili measured annual energy consumption 2017-2018.

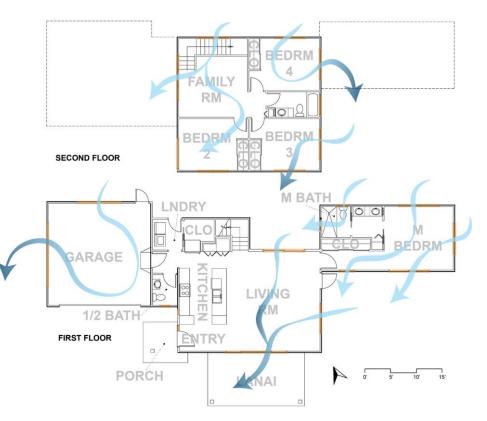
Designed and constructed: Armstrong Builders **Monitored:** Hawaii Natural Energy Institute / Sea Grant / Environmental Research and Design lab

Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aiko Tells Armstrong Builders | LEED Platinum | NAHB Silver

Building Envelope

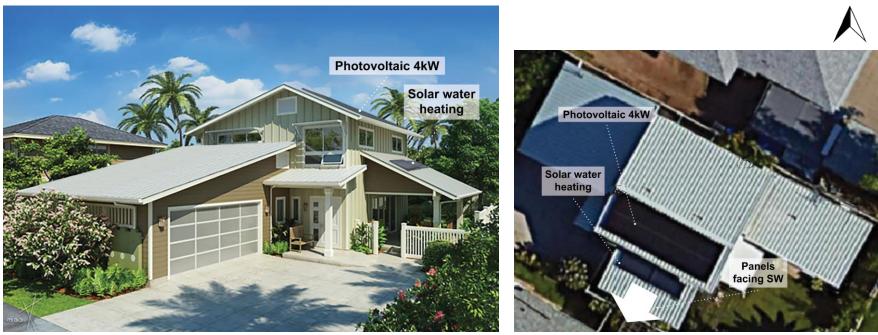

Radiant barrier under the roof

R-30 batt insulation on attic floor

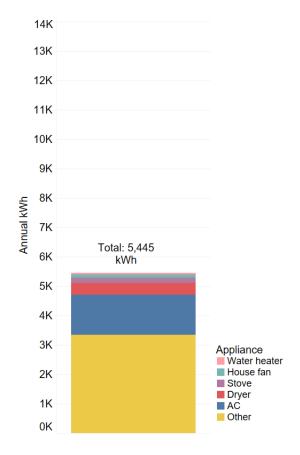

Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aiko Tells

Natural Ventilation, Cross Ventilation

Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aikio Tells



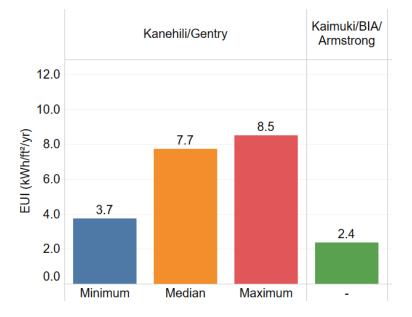
Natural Daylight


Karen Nakamura, BIA (retired) and James Maskrey, HNEI in the kitchen/living room while the house was on display in 2011. Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aiko Tells

Renewable energy

Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aiko Tells

Google Earth accessed 10/25/21



Rendering by Jeff Brink, Armstrong Builders, edited by Darlyn Chau and Aiko Tells

Energy Use Intensity (EUI) Comparison

Energy Use Intensity (EUI):

Calculated by dividing the total energy consumed by the building in one year by the total gross floor area of the building (kWh/ft^2)

A Kaupuni Village Home, Waianae, 2011

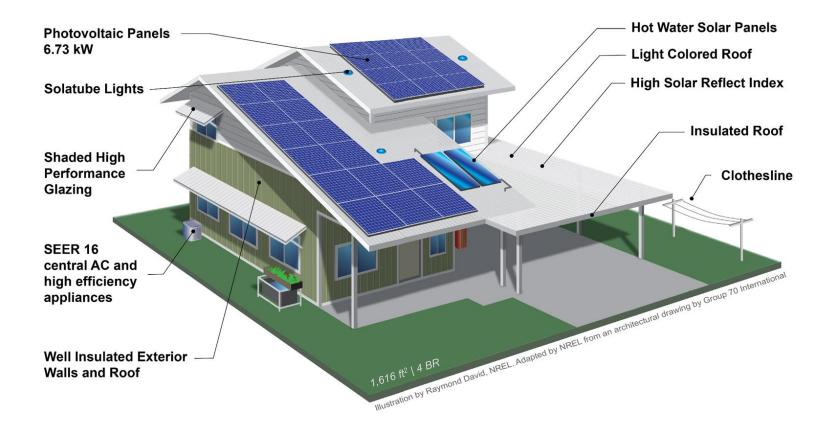
PROJECT PARTNERS

Alcon & Associates Department of Hawai'ian Home Lands Group 70 International Hunt Building Company Hawai'i Chapter of the U.S. Green Building Council Hawai'ian Electric Company University of Hawai'i U.S. Department of Energy/National Renewable Energy Laboratory U.S. Department of Housing and Urban Development Ka'ala Farms Kamehameha Schools State of Hawai'i's Department of Business, Economics Development and Tourism

*19 houses

total

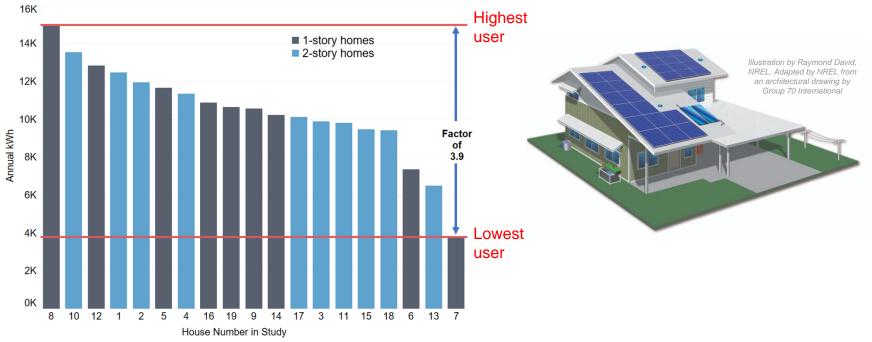
2006


Image credit: Group 70

Residents?

İİİ

47


A Kaupuni Village Home, Waianae, 2011

Kaupuni Village: Net Zero Community

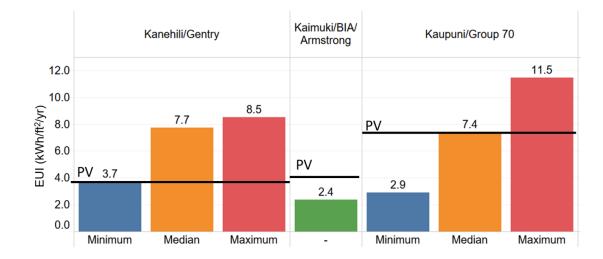
Measured performance

First year: performance was within 1% of net zero

Graph adapted by E.Peppard from: Norton, P.; Kiatreungwattana, K.; Kelly, K.J. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawai'i. In Proceedings of the 2013 ASHRAE Annual Conference, Denver, CO, USA, 22– 26 June 2013.

Kaupuni Village: Net Zero Community

Net zero energy results: EUI and PV production



Consumption > Generation

Consumption < Generation

Net zero community

Energy consumption comparisons

Water Heating

Solar, with electric backup

Electric

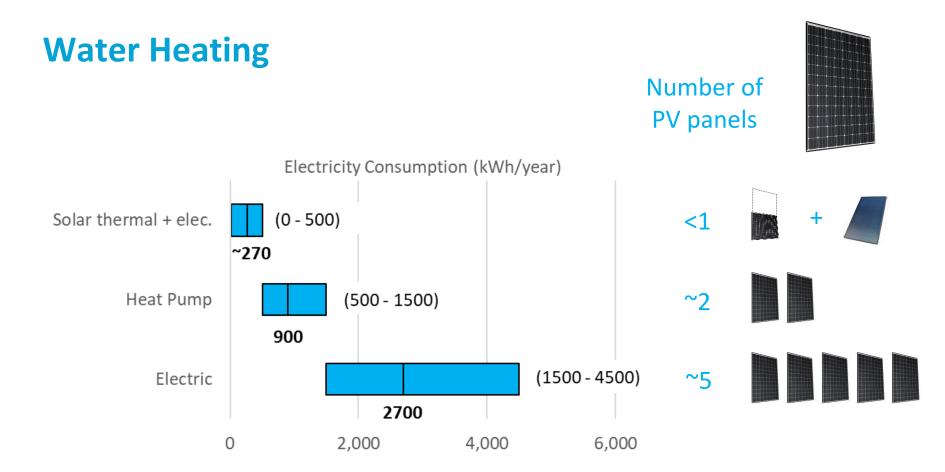
https://www.energystar.gov/

Water Heating

Heat pump

Efficiency >300%

Cools space


Some noise

Requires condensate drain

More information

https://hawaiienergy.com/for-homes/water-heating/heat-pump

https://www.energystar.gov/

Electric Vehicles

https://www.clippercreek.com

Annual Electricity Consumption (kWh/year)

Considerations

Miles traveled per year

Vehicle efficiency

Fraction of charging at home

Electric Vehicles

https://www.clippercreek.com

Annual Electricity Consumption (kWh/year)

Vehicle Efficiency (kWh/100 miles)¹

		High efficiency	Average efficiency	Low efficiency
		25	33	45
Hawai'i average miles/year ²	5,000	1,400	1,800	2,500
	9,000	2,500	3,250	4,450
	15,000	4,150	5,450	7,450

kWh values assume 10% charging loss

¹ <u>https://www.fueleconomy.gov/feg/evsbs.shtml</u>

² <u>http://dbedt.hawaii.gov/economic/databook</u>

Electric Vehicles

https://www.clippercreek.com

Number of PV Panels Vehicle Efficiency (k)				/100 miles) ¹
		High efficiency	Average efficiency	Low efficiency
		25	33	45
Hawai'i average miles/year ²	5,000	2.8	3.6	5.0
	9,000	5.0	6.5	8.9
	15,000	8.3	10.9	14.9

Assumes 10% charging loss 500 kWh/yr per PV panel

¹ <u>https://www.fueleconomy.gov/feg/evsbs.shtml</u>

² <u>http://dbedt.hawaii.gov/economic/databook</u>

How Hawai'i Homes Use Energy - Summary

Major factors

- Comfort strategy and type of AC system
- Type of water heating system
- Occupant behavior
- Appliance selection
- Electric vehicle charging

The energy code, the starting point for efficiency

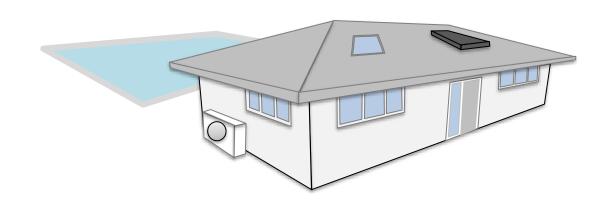
Energy code requirements

2018 IECC with Hawaii amendments

Envelope Roof Walls Windows & skylights Air leakage

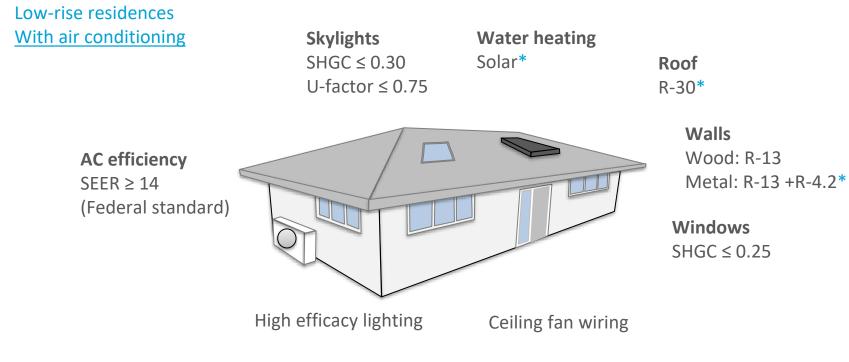
Systems

Air conditioning controls Duct insulation Duct leakage Water heating Swimming pool


Electrical

Permanently installed lighting Ceiling fan EV readiness PV readiness Up to counties for 2018

Not covered


AC efficiency Water heater efficiency Plug-in lighting Appliances

Tropical zone option If $\leq 50\%$ AC

Energy code requirements

2018 IECC with Hawaii amendments

Where are beyond code savings available?

61

Energy code requirements

PRESCRIPTIVE REQUIREMENTS CHECKLIST

Component/System	Requirement	Code Section	Plan Review Notes	Info on Plans
Roof – wood frame	□ R-30, □ U-0.035, □ Total UA alternative, or □ Points option	R402.1, R402.1.5, R407*	Some R-30 options: • 10 in. batt insulation • 5 to 8 in. spray foam	 Insulation location on plans Insulation R-value on plans
Roof – metal truss	□ R-38, □ U-0.035, □ R-30 + R-3, □ R-26 + R-5, □ Total UA alternative, or □ Points option	R402.1, R402.2, R402.1.5, R407*	Metal frame creates a thermal bridge, and more insulation is required. "R-3" and R-5" refer to continuous insulation, typically foam board.	Insulation location on plans Insulation R-value on plans
Roof – metal joist	R-38 in 2x4, 2x6 or 2x8 framing, R-49 in any framing Total UA alternative, or Points option	R402.1, R402.2, R402.1.5, R407*		Insulation location on plans Insulation R-value on plans
Wall – wood frame	R-13, U-0.084, Total UA alternative, or Points option	R402.1, R402.1.5, R407*	Some R-13 options: • 3.5 in. batt insulation • 2 to 3.5 in. spray foam	Insulation location on plans Insulation R-value on plans
Wall – metal frame	Framing 16 in. on center: R-13 + R-4.2 R-21 + R-2.8 Framing 24 in. on center: R-13 + R-3.0 R-15 + R-2.4 Total UA alternative, or Points option	R402.1, R402.2, R402.1.5, R407*	Requires insulation in framing cavity plus a layer of continuous insulation (typically foam board).	Insulation location on plans Insulation R-value on plans
Wall – mass (CMU or concrete)	R-3 exterior, R-4 interior, U-0.197, Exterior reflectance ≥0.64, Overhang projection factor ≥0.3, Mass wall thickness ≥ 6 inches, Total UA alternative, or Points option	R402.1*	Requires either exterior or interior insulation, typically foam board. CMU integral insulation does not comply. Hawaii amendments add several alternatives .	☐ Insulation location on plans ☐ Insulation R-value on plans

https://energy.hawaii.gov/hawaii-energy-building-code/building-code-resources

Beyond-code efficiency strategies

Simulation of energy efficiency measures beyond IECC 2015

Image: Gentry Kapolei Development, LLC

Estimate energy savings

~45-47% annual energy savings possible beyond IECC 2015

BEopt software EnergyPlus Discuss with developers & builders

Prioritize and market measures

O

Inform new construction

Requests for Proposals Share with building professionals

Peer-reviewed journal paper, brochure, conferences

Simulation of energy efficiency measures

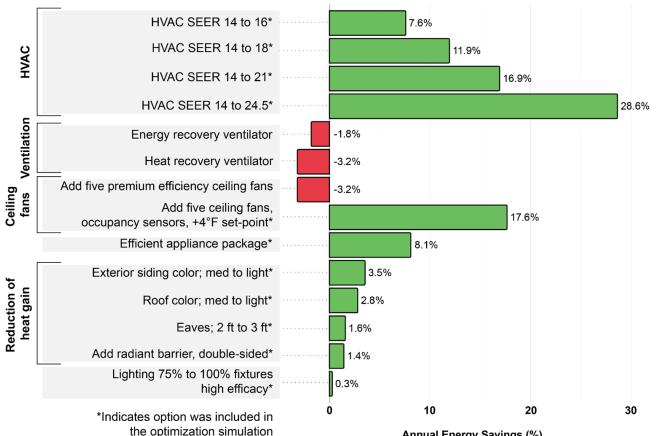


Image: Gentry Kapolei Development, LLC

Parametric Analysis

Base Case based on Gentry 4-bedroom, 1.654 ft² house modified to be minimally compliant to IECC 2015 energy code.

Percent savings represents the change of one efficiency measure at a time.

https://doi.org/10.3390/buildings10070120

Annual Energy Savings (%)

Optimization simulation Energy related costs vs. energy savings

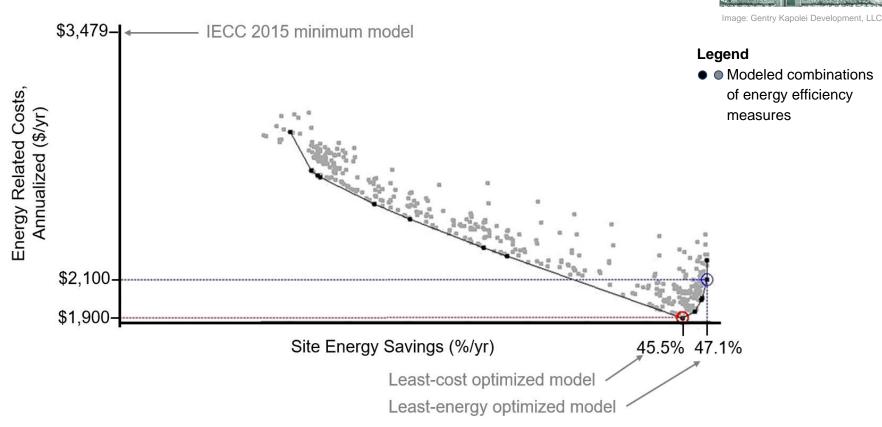


Image: BEopt output graph, adapted

Optimization Model Differences

Category	Variable	IECC 2015 Minimum Baseline Model	Least-Cost Optimized Model	Energy-Optimized Model
HVAC	Seasonal Energy Efficiency Ratio (SEER) for central AC	14	Variable speed SEER 24.5	Variable speed SEER 24.5
	Cooling set-point (°F)	75	79	79
	Ceiling fans	No ceiling fans	Five premium efficiency fans; occupancy sensors;	Five premium efficiency fans; occupancy sensors;
Equipment	Appliances	Standard efficiency	Energy efficient, except stove is standard electric	Energy efficient including induction stove
Envelope	Exterior finish color	Medium	Light	Light
	Eaves length (ft)	2	2	3
	Radiant barrier	None	Double-sided foil radiant barrier	Double-sided foil radiant barrier
	Roof material	Medium color asphalt shingle. Absorptivity: 0.75	Medium color asphalt shingle. Absorptivity: 0.75	White metal roof. Absorptivity: 0.30
	Window U-value (Btu/h-ft²-°F)	0.5	0.4	0.5
Lighting	Lighting	75% high efficiency lighting	100% LED lighting	100% LED lighting

Optimization simulation Annual Energy Use

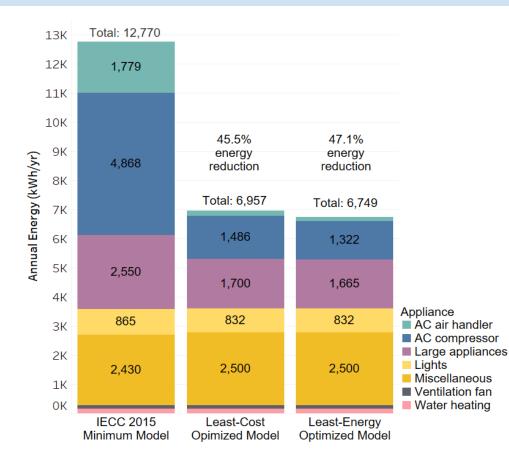
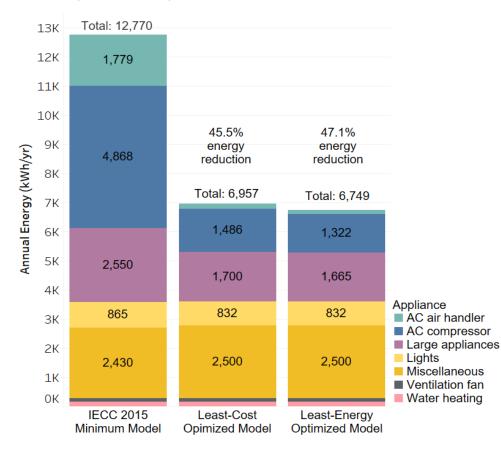



Image: Gentry Kapolei Development, LLC

Optimization simulation Annual Energy Use

https://doi.org/10.3390/buildings10070120

saves ~\$1300 in energyrelated costs annually per house

sav

6

F

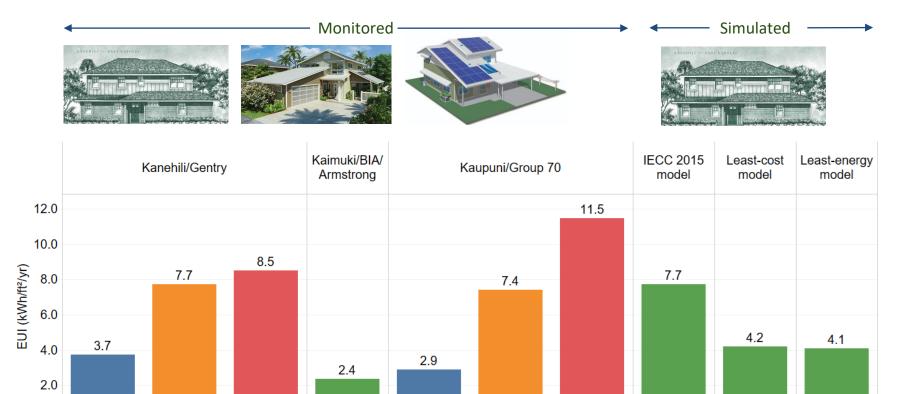
í ni

ίπ)

saves ~ 15 metric tons CO_2e annually per house

If applied to all Oahu new residential for 5 years (~5,300 houses), saves ~ 79,000 metric tons CO_2e and over \$7 million in energy bills.

Image: Gentry Kapolei Development, LLC

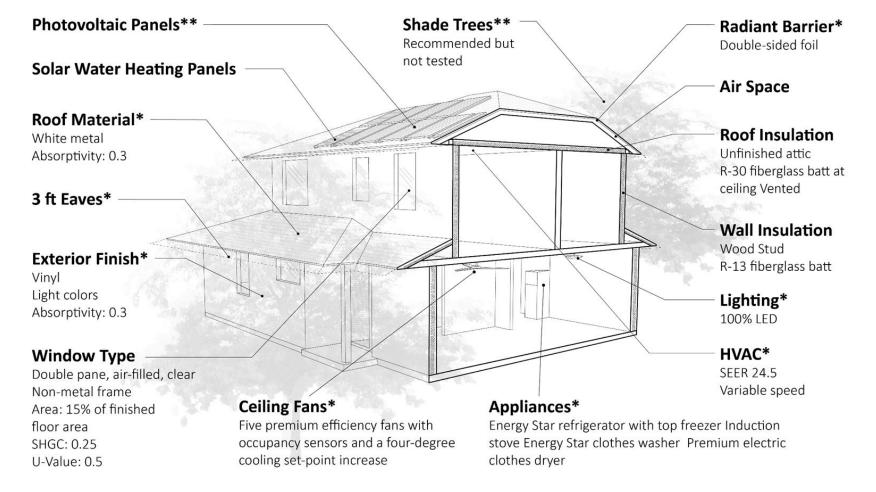

Simulation addition to Energy Use Intensity (EUI) Comparison

0.0

Minimum

Median

Maximum



Minimum

-

Median

Maximum

The energy-optimized model is depicted. Items with * were modified from the IECC 2015 minimum. Items with ** were not modeled but are recommended.

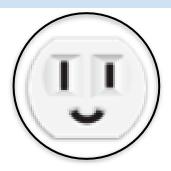
Additional Resources

Heat Pump Water Heater Resources

Hawaii Energy Info https://hawaiienergy.com/forhomes/water-heating/heat-pump

Advanced Water Heating Initiative (NBI) https://www.advancedwaterheatin ginitiative.org/

Key Product Criteria (DOE) https://www.energystar.gov/produ cts/water_heaters/residential_wat er_heaters_key_product_criteria

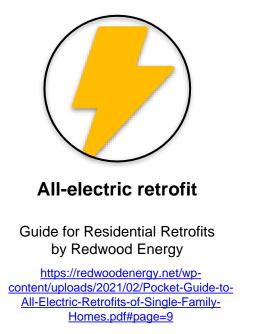

Product Lists and Criteria

Energy Star Induction Stoves https://www.energystar.gov/about/2021_resid ential_induction_cooking_tops

Energy Star Heat Pump Dryer https://www.energystar.gov/products/heat_pu mp_dryer

Consortium for Energy Efficiency Product List https://cee1.org/content/cee-programresources

BuildingGreen Products https://www.buildinggreen.com



Residential Rebates: Hawaii Energy

Air conditioning tune-up Mini split systems Window unit upgrade Whole house fan Attic solar fan Heat pump water heater Solar thermal Appliances Lighting Pool pump

https://hawaiienergy.com/forhomes/rebates

Additional Resources

Building Decarbonization Code Overlay

Renewable energy infrastructure Electric vehicle infrastructure Energy storage infrastructure Demand response thermostats Demand response water heating AC & water heating efficiency Tropical Code

https://newbuildings.org/resource/buildin g-decarbonization-code/

Acknowledgements

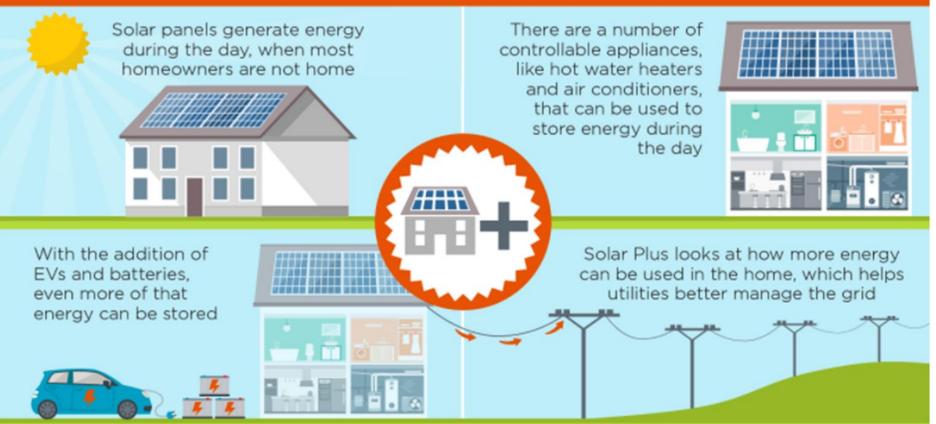
Principal funding for this project was provided by the Hawaii Natural Energy Institute with State of Hawaii Energy Systems Special Fund §304A-C, with support from Hawaii Sea Grant and the School of Architecture.

Special thanks to Dr. Manfred Zapka, principal, Sustainable Design & Consulting, for his leadership and guidance.

Mahalo to volunteer homeowners, Gentry Homes, Armstrong Builders, BIA, National Renewable Energy Lab

Student contributors:

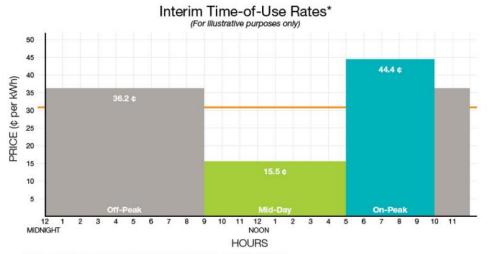
Riley Josephson Kathryn Paradis Aarthi Padmanabhan Carlos Paradis Dustin Chang Shane Matsunaga Ben Thrun Branden Annino Trevor Alexander Jason Epperson Aiko Tells Darlyn Chau



Integrating PV and batteries

The Solar Plus Home

energy.gov/sunshot



Understanding utility tariff structures is key

ОАНИ	<u>ccs</u>	CGS Plus	<u>css</u>	Smart Export
Export Allowed	Yes	Yes	No	Yes
Export Restrictions	No	No	N/A	Solar Day
Reconciliation	Monthly	Annual	N/A	Annual
Minimum Bill	\$25	\$25	\$25	\$25
Credit rate (c/kWh)***	\$0.15	\$0.10	N/A	\$0.15
Program Cap	51.3 MW	50 MW	N/A	25 MW
Inverter Requirements	Advanced with Volt Var and Frequency Watt activated; Fixed Power Factor deactivated.*	Advanced with Volt Var and Frequency Watt activated; Fixed Power Factor deactivated.	Advanced with Volt Var and Frequency Watt activated; Fixed Power Factor deactivated.	Advanced with Volt Var and Frequency Watt activated; Fixed Power Factor deactivated.
Controls	N/A	Yes: Utility or Aggregator	Customer	Yes: Economic
Communications	N/A	N/A	Yes	N/A

<u>https://www.hawaiianelectric.com/products-and-services/customer-renewable-programs/private-rooftop-solar</u>

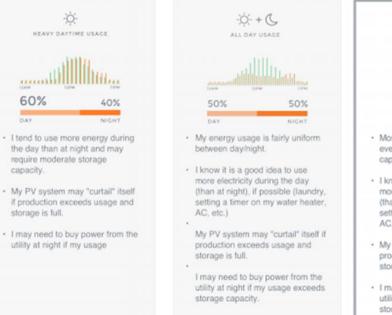
Time of Use rates enhance value of PV plus Battery

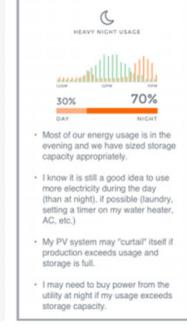
^{*}Illustration reflects December 2021 O'ahu electric rates with applicable surcharges.

NON-FUEL ENERGY CHARGES - ¢ per kWh:

TIME-OF-USE CHARGES

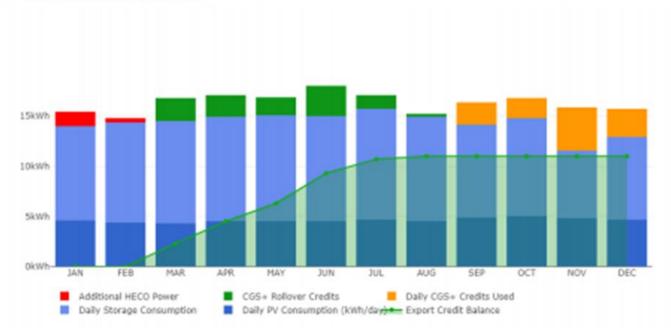
On-Peak Period - per kWh	24.4084 ¢/kWh
Mid-Day Period - per kWh	-4.5493 ¢/kWh
Off-Peak Period - per kWh	16.1367 ¢/kWh


Solar Economics 101 - Optimizing Design

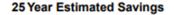

elect a tile below which best describes this household's energy usage

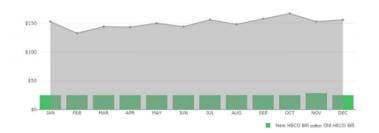
60%

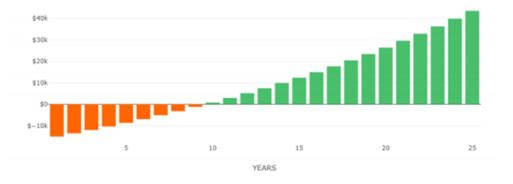
DAY


capacity.

Solar Economics 101 - Optimizing Design


PV Production Estimate


Solar Economics 101 - Investment Payback


PV Project Investment Summary

Subtotal \$_27.300.18 Default Hawaii GET \$_1286.38 Gross System Cost \$_28,586.56 Federal ITC \$_8.575.97 State REITC \$_5.000.00 (or) State refundable REITC \$_3.500.00 Net System Cost \$_15.010.59 Method of Payment <u>Discount Pay By Check</u> First Year Savings Estimate Average Old Monthly HECO: <u>\$_150.17</u> Est. Avg New Monthly HECO: <u>\$_25.30</u> Est. First Year Savings: <u>\$_1498.51</u>

HECO Bill Comparison (Estimated)

The F-150 Lightning is coming...

....and it's a big battery on wheels

FORD F-150 LIGHTNING CHARGING OPTIONS AND ESTIMATED CHARGE TIMES

Estimated charge times 15% to 100% at 240 volts¹

Ford Mobile Charger 32-amp

Standard-Range Battery (targeted EPA-estimated range of 230 miles²)

Extended-Range Battery (targeted EPA-estimated range of 300 miles³)

19 hours*

14 hours*

32-amp portable AC charger runs on either a 120- or 240-volt AC wall outlet and is included in the purchase or lease of an F-150 Lightning.

'Charge time shown with 240-volt power connetion.

Ford Connected Charge Station 48-amp

10 hours 13 hours

48-amp wall mount AC charger runs on a wired 240-volt AC circuit for faster Level 2 home, office or depot charging than the basic 32-amp Ford Mobile Charger.

Ford Charge Station Pro 80-amp

10 hours 8 hours

80-amp wall mount AC charger runs on a wired 240volt AC circuit for optimal AC charging capability. On the extended-range F-150 Lightning, it works with the truck's dual on-board chargers for 15% to 100% overnight charging in about 8 hours.

Electrify America DC Fast Charging Station 150-kW (15% to 80% charge) 44 minutes 41 minutes

Up to 150 kW for rapid charging on the road, the F-150 Lightning can access network of DC fast chargers that can add up to 41 miles of range in about 10 minutes on the standard range truck and up to 54 miles of range in about 10 minutes on the extended range truck.⁴

PV and EV-readiness for new homes

- Energy Code Section R404.2 Solar conduit and electric panel readiness
 - Sufficient conduit and panel to handle a 5 kW solar system
- Section R404.3 Electric Vehicle Readiness
 - Minimum AC Level 2 charging capacity
- The F-150 pulls 7.7 kW to 19.2 kW of power in a range of 32-80 Amps
- Typical home battery systems start at around 5 kW per unit
- Typical electrical panel capacities will need to expand significantly to a minimum of 200A to accommodate our clean energy future
- Electricity usage and desired PV plus Battery system sizes will increase with greater adoption of EVs
- Designing homes to optimize and be ready for this future is key

Hawaii Energy New construction & major renovation projects can receive rebates for incorporating energy-efficient features into building designs and exceeding building code requirements.

Single Family Homes

Multifamily Projects

RESIDENTIAL NEW CONSTRUCTION

PRESCRIPTIVE APPROACH (Single Family (Detached)) Minimum Requirements 85% LED Lighting 50% ENERGY STAR® Appliances Installed

Optional Incentives

High SEER A/C Smart Thermostats Ventilation Fans (whole house fan)

Multifamily New Construction Projects

We've increased involvement in the multifamily sector by offering PERFORMANCE APPROACH Incentives for <u>both</u> In-Unit and Common Areas

Custom incentives for Energy-Efficiency measures exceeding current multifamily building requirements (e.g. Solar & Heat Pump Water Heating)

Solar Water Heating \$750 INSTANT REBATE

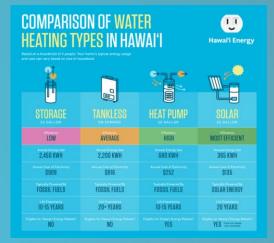
A solar water heater in your home is the best way to save money on your electric bill. With Hawaii Energy's rebate combined with state and federal tax credits, you can <u>save an incredible amount</u> on the system purchase price in the first year.

Heat Pump Water Heater Limited time increase: \$500 INSTANT REBATE

Another option for reducing your water heating cost is to install an ENERGY STAR[®] heat pump water heater for your home. Heat pump water heaters are 2x as efficient as a conventional water heater, cutting your water heating costs in half. Hawaii Energy rebates and federal tax credits make this water heater a very cost-effective upgrade.

https://hawaiienergy.com/for-homes/rebates/water-heating

WATER HEATING RESOURCES


https://hawaiienergy.com/for-homes/water-heating/water-heating-types

https://www.energystar.gov/products/hot-water-heater-replacement-guide

https://www.energy.gov/energysaver/heat-pump-water-heaters

Justin Bizer

Affordability & Accessibility Programs Residential New Construction Programs Justin.V.Bizer@Leidos.com Office: 808.848.8534

Wrap Up

Evaluation Survey

https://www.surveymonkey.com/r/V6LRM6F

Attendee Feedback Survey - Hawaii Residential Energy Code Webinar - May 12, 2021 1. Overall how satisfied were you with this webinar training? Very satisfied ○ Satisfied O Neither satisfied nor dissatisfied Dissatisfied Very dissatisfied Comment

Wendy Meguro, <u>meguro@hawaii.edu</u> Eileen Peppard, <u>epeppard@hawaii.edu</u> Rocky Mould, <u>rmould@hsea.org</u> Erik Kolderup, <u>erik@kolderupconsulting.com</u>

Evaluation Survey

https://www.surveymonkey.com/r/V6LRM6F

Attendee Feedback Survey - Hawaii Residential Energy Code Webinar - May 12, 2021 1. Overall how satisfied were you with this webinar training? Very satisfied ○ Satisfied O Neither satisfied nor dissatisfied Dissatisfied O Very dissatisfied Comment

Webinar next week

Complying With the Energy Code – 2018 IECC with Hawai'i Amendments

A new energy code takes effect for Hawai'i State building projects on December 14

> Thursday, December 9 Noon – 1:30pm

1.5 AIA HSW learning units

Registration <u>https://energy.hawaii.gov/hawaii-energy-building-code</u>

Thank you

Wendy Meguro, <u>meguro@hawaii.edu</u> Eileen Peppard, <u>epeppard@hawaii.edu</u> Rocky Mould, <u>rmould@hsea.org</u> Erik Kolderup, <u>erik@kolderupconsulting.com</u>

